【題目】如圖,在中,,在上取一點,在上取一點,使,過點于點.交于點,若,,則的長為________

【答案】

【解析】

BBHBCDE的延長線于H,BHAC推出△ADE∽△BHE,根據(jù)相似三角形的性質(zhì)得到=根據(jù)平行線的性質(zhì)得到∠H=1,2=DBH,等量代換得到∠H=DBH,于是得到DH=BDDDMBHM,根據(jù)等腰三角形的性質(zhì)和矩形的性質(zhì)得到BM=BH=CD設(shè)CD=x,BH=2x根據(jù)余角的性質(zhì)得到∠2=3,推出△ADE∽△BFE根據(jù)相似三角形的性質(zhì)即可得到結(jié)論

BBHBCDE的延長線于H,DDMBHMBHAC四邊形DCBM是矩形,∴△ADE∽△BHE=

BHAC,∴∠H=12=DBH

∵∠1=2,∴∠H=DBH,DH=BDBM=BH=CD,設(shè)CD=xBH=2x

EFBD,∴∠BNF=90°,∴∠2+∠CBD=3+∠NBF,∴∠2=3

∵∠A=FBE=45°,∴∠1=3,∴△ADE∽△BFE==,BF=BH11+x8=2x,x=3CD=3

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是⊙O的直徑,BC是⊙O的切線,OC∥弦AD

(1)求證:CD是⊙O的切線;

(2)如圖2,連ACBDE.若AE=CE,求tanACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AEBE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:AEC≌△BED

2)若∠138°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為1的等邊三角形,為頂角的等腰三角形,點分別在、上,且,則的周長為( )

A.2B.3C.1.5D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:中,

求作邊上的垂直平分線,使得;將線段沿著的方向平移到線段(其中點平移到點,畫出平移后的線段;(要求用尺規(guī)作圖,不寫作法,保留作圖痕跡.)

連接、,試判斷四邊形是矩形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,邊上有一點,且兩點之間的距離為.

(1)的坐標(biāo)(用含有的式子表示);

(2)如圖(1),若點在線段上運動,點軸的正半軸上運動.當(dāng)的值最小時,.

問:的面積是否為定值,若是,求其值;若不是,請說明理由.

(3)如圖(2),若在外還有一點,連接、、,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線,,三點,點的坐標(biāo)是,點的坐標(biāo)是,動點在拋物線上.

________,________,點的坐標(biāo)為________;(直接填寫結(jié)果)

是否存在點,使得是以為直角邊的直角三角形?若存在,求出所有符合條件的點的坐標(biāo);若不存在,說明理由;

過動點垂直軸于點,交直線于點,過點軸的垂線.垂足為,連接,當(dāng)線段的長度最短時,求出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1, ABC和△CDE均為等腰三角形,AC=BC, CD=CE, AC>CD, ACB=DCE=a,且點A、DE在同一直線上,連結(jié)BE.

(1)求證: AD=BE.

(2)如圖2,a=90°,CMAEE.CM=7, BE=10, 試求AB的長.

(3)如圖3,a=120°, CMAEE, BNAEN, BN=a, CM=b,直接寫出AE的值(a, b 的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案