【題目】如圖,在矩形ABCDAD=12,AB=9,EAD的中點(diǎn),GDC上一點(diǎn),連接BE,BG,GE,并延長GEBA的延長線于點(diǎn)F,GC=5

1)求BG的長度;

2)求證:是直角三角形

3)求證:

【答案】1132)見解析(3)見解析

【解析】

1)在RtBCG中利用勾股定理即可求解;

2)利用勾股定理依次求出BE,EG,再利用勾股定理逆定理即可證明;

3)由E點(diǎn)為AD中點(diǎn)得到EFG中點(diǎn),再根據(jù)BEFG得到△BFG為等腰三角形,得到∠F=∠BGF,再根據(jù)平行線的性質(zhì)即可證明.

1)∵四邊形ABCD為矩形,∴BC=AD=12,∠C=90°,

BG=

2)∵EAD中點(diǎn),∴AE=DE=6

BE=

DG=CD-GC=4

EG=

BG2=DG2+EG2,

是直角三角形

3)∵AE=DE,∠FAE=∠D=90°,又∠AEF=DEG,

∴△AEF≌△DEG

EEG中點(diǎn),又BEFG,

∴△BFG為等腰三角形,

∠F=∠BGF,

BFCD,

∴∠F=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水是生命之源,某市自來水公司為了鼓勵(lì)居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費(fèi):

用水量/

單價(jià)(/m3)

不超過20m3

2.8

超過20m3的部分

3.8

另:每立方米用水加收0.2元的城市污水處理費(fèi)

(1)根據(jù)上表,用水量每月不超過20m3,實(shí)際每立方米收水費(fèi)_____;如果1月份某用戶用水量為19m3,那么該用戶1月份應(yīng)該繳納水費(fèi)____;

(2)某用戶2月份共繳納水費(fèi)80元,那么該用戶2月份用水多少m3?

(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費(fèi),問該用戶3月份實(shí)際應(yīng)該繳納水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD、MN相交與點(diǎn)OFOBO,OM平分∠DOF

1)請直接寫出圖中所有與∠AON互余的角:

2)若∠AOC=FOM,求∠MOD與∠AON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊三角形沿射線向右平移到的位置,連接,則下列結(jié)論:(12互相平分(3)四邊形是菱形(4,其中正確的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某風(fēng)景區(qū)門票價(jià)格如圖所示,有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在端午節(jié)期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為100人,乙團(tuán)隊(duì)人數(shù)不超過40人.設(shè)甲團(tuán)隊(duì)人數(shù)為人,如果甲、乙兩團(tuán)隊(duì)分別購買門票,兩團(tuán)隊(duì)門票款之和為元.

1)直接寫出關(guān)于的函數(shù)關(guān)系式,并寫出自變的取值范圍;

2)若甲團(tuán)隊(duì)人數(shù)不超過80人,計(jì)算甲、乙兩團(tuán)隊(duì)聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)端午節(jié)之后,該風(fēng)景區(qū)對門票價(jià)格作了如下調(diào)整:人數(shù)不超過40人時(shí),門票價(jià)格不變,人數(shù)超過40人但不超過80人時(shí),每張門票降價(jià)元;人數(shù)超過80人時(shí),每張門票降價(jià)元.在(2)的條件下,若甲、乙兩個(gè)旅行團(tuán)端午節(jié)之后去游玩聯(lián)合購票比分別購票最多可節(jié)約3900元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BD是正方形ABCD的對角線,BC=4,點(diǎn)HAD邊上的一動(dòng)點(diǎn),連接CH,作,使得HE=CH,連接AE。

(1)求證:;

2)如圖2,過點(diǎn)EEF//AD交對角線BD于點(diǎn)F,試探究:在點(diǎn)H的運(yùn)動(dòng)過程中,EF的長度是否為一個(gè)定值;如果是,請求出EF的長度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,把ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果CAN是等腰三角形,則B的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABy軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)A的縱坐標(biāo)、點(diǎn)B的橫坐標(biāo)如圖所示.

1)求直線AB的解析式;


2)點(diǎn)P在直線AB上,是否存在點(diǎn)P使得△AOP的面積為1,如果有請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案