【題目】問(wèn)題:如果α,β都為銳角,且tanα=,tanβ=,求α+β的度數(shù).
解決:如圖①,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,連結(jié)AC,易證△ABC是等腰直角三角形,因此可求得α+β=∠ABC= .
拓展:參考以上方法,解決下列問(wèn)題:如果α,β都為銳角,當(dāng)tanα=4,tanβ=時(shí),
(1)在圖②的正方形網(wǎng)格中,利用已作出的銳角α,畫(huà)出∠MON=α﹣β;
(2)求出α﹣β= °.
【答案】解決:45°;拓展:(1)見(jiàn)解析;(2)45
【解析】
解決:觀(guān)察圖象①可知:△ABC是等腰直角三角形,由此即可解決問(wèn)題;
拓展:(1)模仿例題,構(gòu)造∠ABE=α,∠DBC=β,使tanα=4,tanβ= ,從而構(gòu)造出∠MON;
(2)證出等腰直角三角形即可解決問(wèn)題.
解:解決:觀(guān)察圖象①,根據(jù)勾股定理可得AB=,AC=,BC=
∴AB=AC,AB2+ AC2= BC2
∴△ABC是等腰直角三角形.
∴α+β=∠ABC=45°,
故答案為45°.
拓展:(1)如圖②中,∠MOE=α,∠NOC=β,使tanα=4,tanβ= ,連接MN
∴α﹣β=∠MON,∠MON即為所求;
(2)根據(jù)勾股定理可得MO=,MN=,ON=
∴MO=MN,MO2+MN= ON2
∵△MON是等腰直角三角形,
∴∠MON=45°,
∴α﹣β=45°.
故答案為45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系xOy中,直線(xiàn)y=﹣x+6與x軸、y軸分別交于B、A兩點(diǎn),點(diǎn)P從點(diǎn)A開(kāi)沿y軸以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A開(kāi)始沿AB向點(diǎn)B運(yùn)動(dòng)(當(dāng)P,Q兩點(diǎn)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng))如果點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)如果點(diǎn)Q的速度為每秒個(gè)單位長(zhǎng)度,那么當(dāng)t=5時(shí),求證:△APQ∽△ABO;
(2)如果點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng)度,那么多少秒時(shí),△APQ的面積為16?
(3)若點(diǎn)H為平面內(nèi)任意一點(diǎn),當(dāng)t=4時(shí),以點(diǎn)A,P,H,Q四點(diǎn)為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點(diǎn).
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點(diǎn) F 為 AD 上一點(diǎn),AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,如果某點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的和為10,則稱(chēng)此點(diǎn)為“合適點(diǎn)”例如,點(diǎn)(1,9),(﹣2019,2029)…都是“合適點(diǎn)”.
(1)求函數(shù)y=2x+1的圖象上的“合適點(diǎn)”的坐標(biāo);
(2)求二次函數(shù)y=x2﹣5x﹣2的圖象上的兩個(gè)“合適點(diǎn)”A,B之間線(xiàn)段的長(zhǎng);
(3)若二次函數(shù)y=ax2+4x+c的圖象上有且只有一個(gè)合適點(diǎn)”,其坐標(biāo)為(4,6),求二次函數(shù)y=ax2+4x+c的表達(dá)式;
(4)我們將拋物線(xiàn)y=2(x﹣n)2﹣3在x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現(xiàn)將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當(dāng)圖象G上恰有兩個(gè)“合適點(diǎn)”時(shí),直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,如果某點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的和為10,則稱(chēng)此點(diǎn)為“合適點(diǎn)”例如,點(diǎn)(1,9),(﹣2019,2029)…都是“合適點(diǎn)”.
(1)求函數(shù)y=2x+1的圖象上的“合適點(diǎn)”的坐標(biāo);
(2)求二次函數(shù)y=x2﹣5x﹣2的圖象上的兩個(gè)“合適點(diǎn)”A,B之間線(xiàn)段的長(zhǎng);
(3)若二次函數(shù)y=ax2+4x+c的圖象上有且只有一個(gè)合適點(diǎn)”,其坐標(biāo)為(4,6),求二次函數(shù)y=ax2+4x+c的表達(dá)式;
(4)我們將拋物線(xiàn)y=2(x﹣n)2﹣3在x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現(xiàn)將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當(dāng)圖象G上恰有兩個(gè)“合適點(diǎn)”時(shí),直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=44°,點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線(xiàn)段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
(3)若△ACE的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半徑為2,則圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com