如果A、BC三點到直線L的距離不相等,那A、B、C三點可以確定一個圓.        (  )

 

答案:F
提示:

這三點所在的直線與直線L不平形式的情況就是反例。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=
1
4
x2-
5
2
x+6
的圖象與x軸從左到右的兩個交點依次為A、B,與y軸交點為C;
(1)求A、B、C三點的坐標(biāo);
(2)求過B、C兩點的一次函數(shù)的解析式;
(3)如果P(x,y)是線段BC上的動點,O為坐標(biāo)原點,試求△POA的面積S與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(4)是否存在這樣的點P,使得PO=AO?若存在,求出點P的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD中,AD∥BC,∠ABC=90°,AD=4,BC=6,AB=3,以BC為x軸,AB為y軸,建立平面直角坐標(biāo)系xoy.
(1)求過A,C,D三點的拋物線的解析式;
(2)如果一動點P由B點開始沿BC邊以1個單位長度/s的速度向點c移動,連接DP,作射線PE⊥DP,PE與直線AB交于點E,當(dāng)點P移動到第t秒時,點E與點B的距離為s;
①試寫出s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
②s是否存在最大值?若存在,直接寫出這個最大值,并求出這時PE所在直精英家教網(wǎng)線的解析式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽田區(qū)二模)已知:如圖,在平面直角坐標(biāo)系xOy中,以點P(2,
3
)為圓心的圓與y軸相切于點A,與x軸相交于B、C兩點(點B在點C的左邊).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在(1)中的拋物線上是否存在點M,使△MBP的面積是菱形ABCP面積的
1
2
.如果存在,請直接寫出所有滿足條件的M點的坐標(biāo);如果若不存在,請說明理由;
(3)如果一個動點D自點P出發(fā),先到達(dá)y軸上的某點,再到達(dá)x軸上某點,最后運動到(1)中拋物線的頂點Q處,求使點D運動的總路徑最短的路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=(x+1)2+k與x軸交于A、B兩點,與y軸交于點C(0,-3);
(1)求拋物線的對稱軸及k的值;
(2)拋物線的對稱軸上是否存在一點P,使得|PB-PC|的值最大?若存在,求出點P的坐標(biāo);
(3)如果點M是拋物線在第三象限的一動點;當(dāng)M點運動到何處時,M點到AC的距離最大?求出此時的最大距離及M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案