【題目】如圖,點(diǎn)A(a,b)是拋物線上一動(dòng)點(diǎn),OB⊥OA交拋物線于點(diǎn)B(c,d).當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)的過(guò)程中(點(diǎn)A不與坐標(biāo)原點(diǎn)O重合),以下結(jié)論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過(guò)一定點(diǎn).正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】分析:過(guò)點(diǎn)A、B分別作x軸的垂線,通過(guò)構(gòu)建相似三角形以及函數(shù)解析式來(lái)判斷①②是否正確.的面積不易直接求出,那么可由梯形的面積減去構(gòu)建的兩個(gè)直角三角形的面積得出,根據(jù)得出的式子判斷這個(gè)面積是否為定值.利用待定系數(shù)法求出直線AB的解析式,即可判斷④是否正確.
詳解:過(guò)A.B分別作AC⊥x軸于C.BD⊥x軸于D,則:AC=b,OC=a,OD=c,BD=d;
(1)由于OA⊥OB,易知△OAC∽△BOD,有:
即
∴ac=bd(結(jié)論②正確).
(2)將點(diǎn)A.B的坐標(biāo)代入拋物線的解析式中,有:
…Ⅰ、…Ⅱ;
Ⅰ×Ⅱ,得:即 (結(jié)論①正確).
(3),
,
由此可看出,△AOB的面積不為定值(結(jié)論③錯(cuò)誤).
(4)設(shè)直線AB的解析式為:y=kx+h,代入A.B的坐標(biāo),得:
ak+h=b…Ⅲ、ck+h=d…Ⅳ
Ⅲ×cⅣ×a,得:
∴直線AB與y軸的交點(diǎn)為(0,2)(結(jié)論④正確).
綜上,共有三個(gè)結(jié)論是正確的,它們是①②④,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長(zhǎng)線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD與點(diǎn)E,連CD分別交AE、AB于點(diǎn)F、G,過(guò)點(diǎn)A作AH⊥CD交BD于點(diǎn)H,則下列結(jié)論:①∠ADC=15°;②AF=AG;③△ADF≌△BAH;④ DF=2EH,其中正確結(jié)論的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥廠銷售部門(mén)根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來(lái)兩年的銷售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤(rùn)為w(單位:萬(wàn)元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門(mén)分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)貿(mào)市場(chǎng)擬建兩間長(zhǎng)方形儲(chǔ)藏室,儲(chǔ)藏室的一面靠墻(墻長(zhǎng)30m),中間用一面墻隔開(kāi),如圖所示,已知建筑材料可建墻的長(zhǎng)度為42m,則這兩間長(zhǎng)方形儲(chǔ)藏室的總占地面積的最大值為_______m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩塊完全相同的含30°的直角三角板疊放在一起,且∠DAB=30°,有以下四個(gè)結(jié)論,①AF⊥BC;②∠BOE=135°;③O為BC中點(diǎn);④AG:DE=1:3,其中正確結(jié)論的序號(hào)是( 。
A.①②B.②④C.②③D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com