【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
【答案】
(1)6;90°
(2)解:∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,
∴∠OA1B1=∠AOA1,A1B1=OA,
∴B1A1∥OA,
∴四邊形OAA1B1是平行四邊形
(3)解:S=OAA1O=6×6=36.
即四邊形OAA1B1的面積是36
【解析】解:(1)A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可直接求解;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)以及平行線的判定定理證明B1A1∥OA且A1B1=OA即可證明四邊形OAA1B1是平行四邊形;(3)利用平行四邊形的面積公式求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠A+∠C=80°,平行四邊形的周長是40cm,且AB-BC=2cm,求平行四邊形各邊的長和各內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是矩形紙片,翻折∠B,∠D,使AD,BC邊與對(duì)角線AC重疊,且頂點(diǎn)B,D恰好落在同一點(diǎn)O上,折痕分別是CE,AF,則等于( )
A. B. 2 C. 1.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點(diǎn)
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo),與y軸交點(diǎn)坐標(biāo);
(3)畫出這條拋物線;
(4)根據(jù)圖象回答:①當(dāng)x取什么值時(shí),y>0,y<0?②當(dāng)x取什么值時(shí),y的值隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0( )
A.沒有實(shí)根
B.只有一個(gè)實(shí)根
C.有兩個(gè)實(shí)根,且一根為正,一根為負(fù)
D.有兩個(gè)實(shí)根,且一根小于1,一根大于2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月5日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了“環(huán)保知識(shí)競賽”,參賽人數(shù)為1 000人.為了了解本次競賽的成績情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(滿分為100分,最少為50分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻數(shù)分布表和不完整的頻數(shù)分布直方圖如下:
分組 | 頻數(shù) | 所占百分比 |
49.5~59.5 | 8 | 8% |
59.5~69.5 | __ __ | 12% |
69.5~79.5 | 20 | __ __ |
79.5~89.5 | 32 | __ __ |
89.5~100.5 | __ __ | 28% |
(1)補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)若成績在80分以上為優(yōu)秀,求這次參賽的學(xué)生中成績?yōu)閮?yōu)秀的約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是菱形,E是BD延長線上一點(diǎn),F(xiàn)是DB延長線上一點(diǎn),且DE=BF.請(qǐng)你以F為一個(gè)端點(diǎn),和圖中已標(biāo)明字母的某一點(diǎn)連成一條新的線段,猜想并證明它和圖中已有的某一條線段相等(只須證明一組線段相等即可).
(1)連接 ;
(2)猜想: = ;
(3)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com