已知拋物線y=ax2-4ax+c經(jīng)過點A(0,2),頂點B的縱坐標(biāo)為3.將直線AB向下平移,與x軸、y軸分別交于點C、D,與拋物線的一個交點為P,若D是線段CP的中點,則點P的坐標(biāo)為_________.
(,)
【解析】
試題分析:首先求出頂點坐標(biāo),利用待定的系數(shù)法求得物線的解析式;求出直線AB,進(jìn)一步得到直線PC的解析式,由此聯(lián)立一元二次方程求得結(jié)果.
試題解析:拋物線y=ax2-4ax+b的對稱軸是x=,頂點坐標(biāo)為B(2,3),且經(jīng)過A(0,2),
代入函數(shù)解析式得,
解得,
所以函數(shù)解析式為y=?x2+x+2;
如圖,
設(shè)P點坐標(biāo)為(x,?x2+x+2),過點P作PQ⊥x軸,垂足為Q,可得到△COD∽△CQP,
,又因為,所以
因此D點坐標(biāo)為(0,?x2+x+1),
經(jīng)過A、B兩點直線AB的解析式為y=x+2,
因此直線CP的解析式為y=x+(-x2+x+1)=-x2+x+1,與拋物線聯(lián)立方程得,
-x2+x+2=-x2+x+1,解得x=,(負(fù)舍去)
代入拋物線解析式可得y=,
因此P點坐標(biāo)為P(,).
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=ax2+bx+c(a>0)經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.
(1)求該拋物線的解析式.
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一個動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若存在,請說明理由.
(3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐
標(biāo);若存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東鄒城北宿中學(xué)九年級3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)若點D(m,m+1)在第一象限的拋物線上, 求點D關(guān)于直線BC對稱的點的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年浙江省嵊州市九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設(shè)拋物線的頂點為D,求解下列問題:
1.(1)求拋物線的解析式和D點的坐標(biāo);
2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標(biāo);若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com