如圖,在Rt△ABC中,AB=BC=24厘米,點D從點A開始沿邊AB以2厘米/秒的速度向點B移動,移動過程中始終保持DE∥BC,DF∥AC,設點D移動的時間為x秒,四邊形DFCE的面積為y厘米2
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)當點D運動多長時間時,四邊形DFCE的面積最大?

【答案】分析:(1)根據(jù)點D出發(fā)x秒后四邊形DFCE的面積為ycm2,利用S△ABC-S△ADE-S△DBF=四邊形DFCE的面積列方程解答即可;
(2)根據(jù)當二次函數(shù)x=-時,y將取到最值,求出即可.
解答:解:(1)∵點D出發(fā)x秒后四邊形DFCE的面積為ycm2,根據(jù)題意列方程得:
y=×24×24-(2x)2-(24-2x)2,0<x<12;
=-4x2+48x;

(2)∵y=-4x2+48x;
∴當x=-=-=6時,y最大,即四邊形DFCE的面積最大.
點評:此題主要考查了利用三角形的面積、等腰三角形的性質(zhì)以及二次函數(shù)的最值問題等知識,根據(jù)已知得出S△ABC-S△ADE-S△DBF=四邊形DFCE的面積是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案