【題目】如圖,點(diǎn)在拋物線上,且拋物線與軸分別交于點(diǎn)和點(diǎn),與軸交于點(diǎn)

1)求拋物線的解析式.

2)若點(diǎn)為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求的最小值.

3)點(diǎn)為拋物線上除點(diǎn)外的一點(diǎn),若的面積相等,求點(diǎn)的坐標(biāo)。

【答案】(1) ;(2);(3) ,.

【解析】

1)將點(diǎn)的坐標(biāo)代入求解即可.

2)找對(duì)稱點(diǎn),利用兩點(diǎn)之間線段最短求解即可.

3)將幾何問題轉(zhuǎn)化為函數(shù)問題求解即可.

解(1)將點(diǎn)代入

解得

(2)如圖1,作點(diǎn)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),連接

的最小值為

,∴最小值為

(3)由(1)可求出,

∴直線的解析式為

的面積相等

如圖所示:①過交拋物線于點(diǎn)

∴直線的解析式為

聯(lián)合

②過點(diǎn),交拋物線于點(diǎn)

直線的解析式為

聯(lián)合

解得

,

綜上所述,滿足條件的有三個(gè),分別為:

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)口袋中裝有六個(gè)完全相同的小球,小球上分別標(biāo)有1,2,57,8,13六個(gè)數(shù),攪勻后一次從中摸出一個(gè)小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1x+11m經(jīng)過一、二、四象限且關(guān)于x的分式方程3x+的解為整數(shù)的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CEAB于點(diǎn)F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2,=,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B42°,把ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),得到AB'C',點(diǎn)C的對(duì)應(yīng)點(diǎn)C'落在BC邊上,且B'ABC,則∠BAC'的度數(shù)為( 。

A.24°B.25°C.26°D.27°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,EAD邊上的一個(gè)動(dòng)點(diǎn)(有與A、D重合),以E為圓心,EA為半徑的⊙ECEG點(diǎn),CF與⊙E切于F點(diǎn).AD4,AEx,CF2y

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)是否存在x的值,使得FG把△CEF的面積分成12兩部分?若存在,求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在半徑為3的⊙O中,弦AB=3,弦AC=3,則∠BAC的度數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于給定的圖形G和點(diǎn)P,若點(diǎn)P可通過一次向上或向右平移nn0)個(gè)單位至圖形G上某點(diǎn)P′,則稱點(diǎn)P為圖形G的“可達(dá)點(diǎn)”,特別地,當(dāng)點(diǎn)P在圖形G上時(shí),點(diǎn)P為圖形G的“可達(dá)點(diǎn)”.

1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,1),B21),

在點(diǎn)OA、B中,不是直線y=﹣x+2的“可達(dá)點(diǎn)”的是   ;

若點(diǎn)A是直線l的“可達(dá)點(diǎn)”且點(diǎn)A不在直線l上,寫出一條滿足要求的直線l的表達(dá)式:   ;

若點(diǎn)A、B中有且僅有一點(diǎn)是直線ykx+2的“可達(dá)點(diǎn)”,則k的取值范圍是   

2)如圖2,在平面直角坐標(biāo)系xOy中,O的半徑為1,直線ly=﹣x+b

當(dāng)b=﹣2時(shí),若直線m上一點(diǎn)NxN,yN)滿足NO的“可達(dá)點(diǎn)”,直接寫出xN的取值范圍   ;

若直線m上所有的O的“可達(dá)點(diǎn)”構(gòu)成一條長(zhǎng)度不為0的線段,直接寫出b的取值范圍   

查看答案和解析>>

同步練習(xí)冊(cè)答案