如圖,△ABC中,BD和CE是兩條高,如果∠A=45°,則=   
【答案】分析:由△ABC中BD和CE是兩條高,∠A=45°,易得△AEC和△ABD是等腰直角三角形,則可求得在Rt△ACE,Rt△ABD中,cos∠A==,cos∠A==,∠A是公共角,可證得△ADE∽△ACB,然后利用相似三角形的對應(yīng)邊成比例,求得答案.
解答:解:∵△ABC中BD和CE是兩條高,∠A=45°,
∴∠AEC=∠ADB=90°,
∴∠ACE=∠ABD=45°,
∴△AEC和△ABD是等腰直角三角形,
∴在Rt△ACE,Rt△ABD中,cos∠A==
∵cos∠A==,∠A是公共角,
∴△ADE∽△ACB,
==
故答案為:
點評:此題考查了相似三角形的判定與性質(zhì)以及等腰直角三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案