如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC-CB=b cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.

(1)7;(2);(3)

解析試題分析:(1)據(jù)“點M、N分別是AC、BC的中點”,先求出MC、CN的長度,再利用MN=CM+CN即可求出MN的長度即可.
(2)據(jù)題意畫出圖形即可得出答案.
(3)據(jù)題意畫出圖形即可得出答案.
試題解析:(1)如圖

∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∴MN=AC+BC=( AC+BC)=AB=7cm.
答:MN的長為7cm.
(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,則MN= cm,

理由是:∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC+CB=acm,MN=AC+BC=(AC+BC)=cm.
(3)解:如圖,

∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC-CB=bcm,MN=AC-BC=(AC-BC)=cm.
考點:兩點間的距離.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,EF//AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
∵EF∥AD,
∴∠2=      
又∵∠1=∠2,
∴∠1=∠3(   )
∴AB∥      
∴∠BAC+   =180°(   )
∵∠BAC=80°,
∴∠AGD=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,AB∥CD,AE交CD于點C,DE⊥AE,垂足為E,∠A=37°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,將一副三角板,如圖放置在桌面上,讓三角板OAB的30°角頂點與三角板OCD的直角頂點重合,邊OA與OC重合,固定三角板OCD不動,把三角板OAB繞著頂點O順時針轉(zhuǎn)動,直到邊OB落在桌面上為止。

(1)如下圖,當三角板OAB轉(zhuǎn)動了20°時,求∠BOD的度數(shù);

(2)在轉(zhuǎn)動過程中,若∠BOD=20°,在下面兩圖中分別畫出∠AOB的位置,并求出轉(zhuǎn)動了多少度?

(3)在轉(zhuǎn)動過程中,∠AOC與∠BOD有怎樣的等量關(guān)系,請你給出相等關(guān)系式,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,C、D是線段AB的三等分點,且AD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,∠1=∠2,∠1+∠2=162°,求∠3與∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,要想判斷AB是否與CD平行,我們可以測量那些角;請你寫出三種方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

在平行四邊形ABCD中,點E在AD上,且AE:ED=3:1,CE的延長線與BA的延長線交于點F,則SAFE:S四邊形ABCE為(  )

A.3:4 B.4:3 C.7:9 D.9:7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,線段,點是線段上任意一點,點是線段的中點,點是線段的中點,求線段的長.

查看答案和解析>>

同步練習冊答案