【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).
【答案】(1),M(1,5);(2)2<m<4;(3)P1(,),P2(,),P3(3,1),P4(﹣3,7).
【解析】(1)把點(diǎn)A(3,1),點(diǎn)C(0,4)代入二次函數(shù),得: 解得:,∴二次函數(shù)解析式為,配方得,∴點(diǎn)M的坐標(biāo)為(1,5);
(2)設(shè)直線AC解析式為y=kx+b,把點(diǎn)A(3,1),C(0,4)代入得: 解得:,∴直線AC的解析式為y=﹣x+4,如圖所示,對(duì)稱軸直線x=1與△ABC兩邊分別交于點(diǎn)E、點(diǎn)F.
把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點(diǎn)E坐標(biāo)為(1,3),點(diǎn)F坐標(biāo)為(1,1),∴1<5﹣m<3,解得2<m<4;
(3)連接MC,作MG⊥y軸并延長(zhǎng)交AC于點(diǎn)N,則點(diǎn)G坐標(biāo)為(0,5).
∵MG=1,GC=5﹣4=1,∴MC===,把y=5代入y=﹣x+4解得x=﹣1,則點(diǎn)N坐標(biāo)為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點(diǎn)P在AC上,則∠MCP=90°,則點(diǎn)D與點(diǎn)C必為相似三角形對(duì)應(yīng)點(diǎn).
①若有△PCM∽△BDC,則有,∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點(diǎn)P在y軸右側(cè),作PH⊥y軸,∵∠PCH=45°,CP=,∴PH==,把x=代入y=﹣x+4,解得y=,∴P1(,);
同理可得,若點(diǎn)P在y軸左側(cè),則把x=代入y=﹣x+4,解得y=,∴P2(,);
②若有△PCM∽△CDB,則有,∴CP==,∴PH==3;
若點(diǎn)P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;
若點(diǎn)P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7),∴所有符合題意得點(diǎn)P坐標(biāo)有4個(gè),分別為P1(,),P2(,),P3(3,1),P4(﹣3,7).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店5月1日舉行促銷(xiāo)優(yōu)惠活動(dòng),當(dāng)天到該商店購(gòu)買(mǎi)商品有兩種方案,方案一:用168元購(gòu)買(mǎi)會(huì)員卡成為會(huì)員后,憑會(huì)員卡購(gòu)買(mǎi)商店內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;方案二:若不購(gòu)買(mǎi)會(huì)員卡,則購(gòu)買(mǎi)商店內(nèi)任何商品一律按商品價(jià)格的9.5折優(yōu)惠.
(1)若小敏不購(gòu)買(mǎi)會(huì)員卡,所購(gòu)買(mǎi)商品的價(jià)格為120元時(shí),實(shí)際應(yīng)支付多少元?
(2)請(qǐng)幫小敏算一算,她購(gòu)買(mǎi)商品的價(jià)格為多少元時(shí),兩個(gè)方案所付金額相同?
(3)購(gòu)買(mǎi)商品的價(jià)格元時(shí),采用方案一更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,﹣3),反比例函數(shù) 的圖象經(jīng)過(guò)點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)A、C,
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面列出的不等式中,正確的是( )
A. a不是負(fù)數(shù),可表示成a>0 B. x不大于3,可表示成x<3
C. m與4的差是負(fù)數(shù),可表示成m-4<0 D. x與2的和是非負(fù)數(shù),可表示成x+2>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+5的圖象經(jīng)過(guò)點(diǎn)A(1,4)、B(n , 2).
(1)求m、n的值;
(2)當(dāng)函數(shù)圖象在第一象限時(shí),自變量x的取值范圍是什么?
(3)在x軸上找一點(diǎn)P,使PA+PB最短。求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最小?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)組織學(xué)生參加夏令營(yíng),分為甲、乙、丙三組進(jìn)行活動(dòng).下面兩幅統(tǒng)計(jì)圖反映了學(xué)生報(bào)名參加夏令營(yíng)的情況.請(qǐng)你根據(jù)圖中的信息回答下列問(wèn)題:
報(bào)名人數(shù)分布直方圖 報(bào)名人數(shù)扇形統(tǒng)計(jì)圖
(1)求該年級(jí)報(bào)名參加本次活動(dòng)的總?cè)藬?shù);
(2)求該年級(jí)報(bào)名參加乙組的人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,那么,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com