【題目】如圖1,現(xiàn)有一個(gè)長方體水槽放在桌面上,從水槽內(nèi)量得它的側(cè)面高20cm,底面的長25cm,寬20cm,水槽內(nèi)水的高度為acm,往水槽里放入棱長為10cm的立方體鐵塊.
(1)求下列兩種情況下a的值.
①若放入鐵塊后水面恰好在鐵塊的上表面;
②若放入鐵塊后水槽恰好盛滿(無溢出).
(2)若0<a≤18,求放入鐵塊后水槽內(nèi)水面的高度(用含a的代數(shù)式表示).
(3)如圖2,在水槽旁用管子連通一個(gè)底面在桌面上的圓柱形容器,內(nèi)部底面積為50cm2,管口底部A離水槽內(nèi)底面的高度為hcm(h>a),水槽內(nèi)放入鐵塊,水溢入圓柱形容器后,容器內(nèi)水面與水槽內(nèi)水面的高度差為8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)
【答案】(1)①a=8;②a=18;(2)1.25a或a+2;(3)h=16.2.
【解析】
(1)①根據(jù)題意列出方程得出a的值即可;②根據(jù)題意列出方程得出a的值即可;(2)設(shè)放入鐵塊后水槽內(nèi)水面的高度為xcm,根據(jù)題意列出方程解答即可;(3)根據(jù)題意得出方程解答即可.
(1)①由題意得:25×20×a=25×20×10-103,
解得:a=8,
②25×20×20=103+25×20×a,
解得:a=18,
(2)設(shè)放入鐵塊后水槽內(nèi)水面的高度為xcm,
當(dāng)0<a≤8時(shí),由題意得:25×20x=10×10x+25×20×a,
解得:x=1.25a,
當(dāng)8<a≤18時(shí),由題意得:25×20x=103+25×20×a,
解得:x=a+2;
(3)由題意得:50(h-8.2)=500(15+2-h)
解得:h=16.2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=0.5x+1分別與x軸、y軸交于點(diǎn)A,點(diǎn)B,直線CD:y=x+b分別與x軸,y軸交于點(diǎn)C,點(diǎn)D.直線AB與CD相交于點(diǎn)P,已知S△ABD=4,則點(diǎn)P的坐標(biāo)是( )
A. (3,2.5) B. (8,5) C. (4,3) D. (0.5,1.25)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年端午前夕,某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛情況,對某小區(qū)居民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成圖1、圖2兩幅統(tǒng)計(jì)圖(尚不完整),請根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù).
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小韋吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線c1:y=ax2﹣4a+4(a<0)經(jīng)過第一象限內(nèi)的定點(diǎn)P
(1)直接寫出點(diǎn)P的坐標(biāo);
(2)若a=﹣1,如圖1,點(diǎn)M的坐標(biāo)為(2,0)是x軸上的點(diǎn),N為拋物線c1上的點(diǎn),Q為線段MN的中點(diǎn),設(shè)點(diǎn)N在拋物線c1上運(yùn)動(dòng)時(shí),Q的運(yùn)動(dòng)軌跡為拋物線c2 , 求拋物線c2的解析式;
(3)直線y=2x+b與拋物線c1相交于A、B兩點(diǎn),如圖2,直線PA、PB與x軸分別交于D、C兩代女.當(dāng)PD=PC時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=9,點(diǎn)E在CD邊上,且DE=2CE,點(diǎn)P是對角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PD的最小值是( )
A.3
B.10
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點(diǎn),過點(diǎn)D作DE∥BC,交AB于點(diǎn)E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90。 , 0B=2OA,點(diǎn)A在反比例函數(shù) 的圖象上,點(diǎn)B在反比例函數(shù) 的圖象上,則k的值是( )
A.-4
B.4
C.-2
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com