如圖,拋物線y=a(x﹣h)2+k經(jīng)過點(diǎn)A(0,1),且頂點(diǎn)坐標(biāo)為B(1,2),它的對稱軸與x軸交于點(diǎn)C.

(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點(diǎn)P,使得△ACP是以AC為底的等腰三角形,請求出此時(shí)點(diǎn)P的坐標(biāo).
(3)上述點(diǎn)是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)?若是,請說明理由;若不是,請求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo).
解:(1)∵拋物線y=a(x﹣h)2+k頂點(diǎn)坐標(biāo)為B(1,2),
∴y=a(x﹣1)2+2。
∵拋物線經(jīng)過點(diǎn)A(0,1),∴a(0﹣1)2+2=1,解得a=﹣1。
∴此拋物線的解析式為y=﹣(x﹣1)2+2,即y=﹣x2+2x+1。
(2)∵A(0,1),C(1,0),∴OA=OC。
∴△OAC是等腰直角三角形。
過點(diǎn)O作AC的垂線l,根據(jù)等腰三角形的“三線合一”的性質(zhì)知:l是AC的中垂線,
∴l(xiāng)與拋物線的交點(diǎn)即為點(diǎn)P。
如圖,直線l的解析式為y=x,

解方程組,
(不合題意舍去)。
∴點(diǎn)P的坐標(biāo)為(,)。
(3)點(diǎn)P不是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn).
由(1)知,點(diǎn)C的坐標(biāo)為(1,0),
設(shè)直線AC的解析式為y=kx+b,
,解得。
∴直線AC的解析式為y=﹣x+1.
設(shè)與AC平行的直線的解析式為y=﹣x+m.
解方程組,代入消元,得﹣x2+2x+1=﹣x+m,即x2﹣3x+m﹣1=0。
∵此點(diǎn)與AC距離最遠(yuǎn),∴直線y=﹣x+m與拋物線有且只有一個(gè)交點(diǎn)。
∴方程x2﹣3x+m﹣1=0有兩個(gè)相等的實(shí)數(shù)根。
△=9﹣4(m﹣1)=0,解之得m=。
∴x2﹣3x+﹣1=0,解得x1=x2=,此時(shí)y=。
∴第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo)為()。

試題分析:(1)由拋物線y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是B(1,2)知:h=1,k=2,則y=a(x﹣1)2+2,再把A點(diǎn)坐標(biāo)代入此解析式即可。
(2)易知△OAC是等腰直角三角形,可得AC的垂直平分線是直線y=x,根據(jù)“線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等”知直線y=x與拋物線的交點(diǎn)即為點(diǎn)P,解方程組即可求出P點(diǎn)坐標(biāo)。
(3)先求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo),再與P點(diǎn)的坐標(biāo)比較進(jìn)行判斷.滿足條件的點(diǎn)一定是與直線AC平行且與拋物線有唯一交點(diǎn)的直線與拋物線相交產(chǎn)生的,易求出直線AC的解析式,設(shè)出與AC平行的直線的解析式,令它與拋物線的解析式組成的方程組有唯一解,求出交點(diǎn)坐標(biāo),通過判斷它與點(diǎn)P是否重合來判斷點(diǎn)P是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為點(diǎn)D,并與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.

(1)求點(diǎn)A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點(diǎn)P,使以點(diǎn)P、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)取點(diǎn)E(,0)和點(diǎn)F(0,),直線l經(jīng)過E、F兩點(diǎn),點(diǎn)G是線段BD的中點(diǎn).
①點(diǎn)G是否在直線l上,請說明理由;
②在拋物線上是否存在點(diǎn)M,使點(diǎn)M關(guān)于直線l的對稱點(diǎn)在x軸上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).

(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,0),(5,0),(3,﹣4).

(1)求該二次函數(shù)的解析式;
(2)當(dāng)y>﹣3,寫出x的取值范圍; 
(3)A、B為直線y=﹣2x﹣6上兩動(dòng)點(diǎn),且距離為2,點(diǎn)C為二次函數(shù)圖象上的動(dòng)點(diǎn),當(dāng)點(diǎn)C運(yùn)動(dòng)到何處時(shí)△ABC的面積最。壳蟪龃藭r(shí)點(diǎn)C的坐標(biāo)及△ABC面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.

(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過原點(diǎn)的拋物線的對稱軸是直線x=2.

(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請你觀察、猜想,在這個(gè)過程中,的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們知道,經(jīng)過原點(diǎn)的拋物線解析式可以是。
(1)對于這樣的拋物線:
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a=       ;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a 與m之間的關(guān)系式是       ;
(2)繼續(xù)探究,如果b≠0,且過原點(diǎn)的拋物線頂點(diǎn)在直線上,請用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點(diǎn)的拋物線,頂點(diǎn)A1,A2,…,An在直線上,橫坐標(biāo)依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經(jīng)過點(diǎn)Dn,求所有滿足條件的正方形邊長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,AB是半圓O的直徑,以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長線交半圓O于點(diǎn)D,其中OA=4.

(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接OD,當(dāng)OD與半圓C相切時(shí),求的長;
(3)過點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,拋物線所表示的函數(shù)解析式為y=﹣2(x﹣h)2+k,則下列
結(jié)論正確的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0

查看答案和解析>>

同步練習(xí)冊答案