【題目】如圖,在△AOB中,∠O=90°,AO=18cm,BO=30cm,動(dòng)點(diǎn)M從點(diǎn)A開(kāi)始沿邊AO以1cm/s的速度向終點(diǎn)O移動(dòng),動(dòng)點(diǎn)N從點(diǎn)O開(kāi)始沿邊OB以2cm/s的速度向終點(diǎn)B移動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).如果M、N兩點(diǎn)分別從A、O兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts時(shí)四邊形ABNM的面積為Scm2.
(1)求S關(guān)于t的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;
(2)判斷S有最大值還是有最小值,用配方法求出這個(gè)值.
【答案】(1)S=t2﹣18t+270(0<t≤15);(2)S有最小值,這個(gè)值是189
【解析】
(1)根據(jù)題意和三角形的面積公式求出S關(guān)于t的函數(shù)關(guān)系式;
(2)利用配方法把一般式化為頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)解答.
(1)由題意得,AM=t,ON=2t,則OM=OA-AM=18-t,
四邊形ABNM的面積S=△AOB的面積-△MON的面積
=×18×30-×(18-t)×2t
=t2-18t+270(0<t≤15);
(2)S=t2-18t+270
=t2-18t+81-81+270
=(t-9)2+189,
∵a=1>0,
∴S有最小值,這個(gè)值是189.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是的中點(diǎn),AB和DC的延長(zhǎng)線(xiàn)交于⊙O外一點(diǎn)E.
求證:(1)∠EBC=∠D;
(2)BC=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=20cm,BC=16cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以6cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線(xiàn)段CA上由C向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y1=﹣2x2+2,直線(xiàn)y2=2x+2,當(dāng)x任取一值時(shí),對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:①當(dāng)x>0時(shí),y1>y2;②當(dāng)x<0時(shí),x值越大,M值越大;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.其中正確結(jié)論的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線(xiàn)AD折疊,點(diǎn)B落在AC邊上的E處,那么下列等式成立的是( 。
A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線(xiàn)對(duì)稱(chēng)軸的距離記為d,滿(mǎn)足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);
(3)二次函數(shù)的對(duì)稱(chēng)軸上是否存在一點(diǎn)C,使得△CBD的周長(zhǎng)最?若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等腰的斜邊上的一點(diǎn),,于點(diǎn)交于點(diǎn).
求證:是的中點(diǎn);
求的值;
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A表示一個(gè)數(shù),若把數(shù)A寫(xiě)成形如的形式,其中、、、、…都為整數(shù).則我們稱(chēng)把數(shù)A寫(xiě)成連分?jǐn)?shù)形式.
例如:把2.8寫(xiě)成連分?jǐn)?shù)形式的過(guò)程如下:
2.8-2=0.8,,
1.25-1=0.25,,
4-4=0.
(1)把3.245寫(xiě)成連分?jǐn)?shù)形式不完整的過(guò)程如下:
3.245-3=0.245,,
4.082-4=0.082,,
12.250-12=0.25,,
4-4=0.
∴
則_____________;_____________;
(2)請(qǐng)把寫(xiě)成連分?jǐn)?shù)形式;
(3)有這樣一個(gè)問(wèn)題:如圖是長(zhǎng)為47,寬為10的長(zhǎng)方形紙片.從中裁剪出正方形,若長(zhǎng)方形紙片無(wú)剩余,則剪出的正方形最少是幾個(gè)?
小明認(rèn)為這個(gè)問(wèn)題和 “把一個(gè)數(shù)化為連分?jǐn)?shù)形式” 有關(guān)聯(lián),并把化成連分?jǐn)?shù)從而解決了問(wèn)題.你可以參考小明的思路解決上述問(wèn)題,請(qǐng)直接寫(xiě)出“剪出的正方形最少”時(shí),正方形的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com