【題目】已知二次函數(shù)y=(xm)(xm4)(m為常數(shù))

1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個(gè)不同的公共點(diǎn);

2)求證:不論m為何值,該函數(shù)的圖象的頂點(diǎn)縱坐標(biāo)不變;

3)若該函數(shù)的圖象與x軸交點(diǎn)為A、B,與y軸交點(diǎn)為C,當(dāng)﹣3m≤﹣1時(shí),△ABC面積S的取值范圍為

【答案】1證明見解析;(2證明見解析;(36S8

【解析】

1)當(dāng)y=0時(shí),(x-m)(x-m-4)=0,解得x1=m,x2=m+4,即可得到結(jié)論;

2)圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(m,0)(m+4,0),由拋物線的對(duì)稱性可知圖象頂點(diǎn)橫坐標(biāo)為m+2,代入解析式求得y=-4,從而求得結(jié)論;

3)當(dāng)-3≤m≤-1時(shí),求出S=2|m2+4m|,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.

1)當(dāng)y=0時(shí),(x-m)(x-m-4)=0

解得:x1=m,x2=m+4,

mm+4,方程有兩個(gè)不相等的實(shí)數(shù)根,

不論m為何值,函數(shù)圖象與x軸總有兩個(gè)不同的公共點(diǎn);

2)由(1)得圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(m,0)、(m+40),

由拋物線的對(duì)稱性可知圖象頂點(diǎn)橫坐標(biāo)為m+2,

x=m+2代入y=(xm)(xm4)y=4

不論m為何值,該函數(shù)的圖象的頂點(diǎn)縱坐標(biāo)不變?yōu)椹?/span>4

3y=(xm)(xm4)=x2(2m+4)x+m2+4m,

C(0,m2+4m)

圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(m0)、(m+40),

AB=4,

SABOC×|m2+4m|=2|m2+4m|,

當(dāng)m=3時(shí),S=2×3=6;當(dāng)m=1時(shí),S=2×3=6,

當(dāng)頂點(diǎn)在y軸上,即m=2時(shí),|m2+4m|最大值是4,故此時(shí)S=2×4=8,∴6≤S≤8

故答案為:6≤S≤8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BE是弦,點(diǎn)D是弦BE上一點(diǎn),連接OD并延長(zhǎng)交⊙O于點(diǎn)C,連接BC,過點(diǎn)DFDOC交⊙O的切線EF于點(diǎn)F

1)求證:∠CBEF;

2)若⊙O的半徑是2,點(diǎn)DOC中點(diǎn),∠CBE15°,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(4,0)B(1,0)C(0,-2)三點(diǎn).

(1)求出拋物線的解析式;

(2)P是拋物線上一動(dòng)點(diǎn),過PPMx軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十·一”期間,某服裝店為了吸引更多的顧客購買服裝,在.店門口設(shè)計(jì)了一個(gè)轉(zhuǎn)轉(zhuǎn)盤促銷活動(dòng):當(dāng)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤,根據(jù)指針指示返還相應(yīng)的現(xiàn)金,若指針指在分界線時(shí),需要重新轉(zhuǎn)動(dòng),直到指向數(shù)字為止,購買幾件服裝就轉(zhuǎn)動(dòng)幾次轉(zhuǎn)盤.李女士購買了兩件服裝,她得到返還的現(xiàn)金數(shù)不低于元的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC=120°,AC=2O是△ABC的外接圓,D上任意一點(diǎn)(不包括點(diǎn)AC),順次連接四邊形ABCD四邊中點(diǎn)得到四邊形EFGH,則四邊形EFGH的周長(zhǎng)的最大值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線上,點(diǎn)B1,B2,…,Bn均在雙曲線上,并且滿足:A1B1x軸,B1A2y軸,A2B2x軸,B2A3y軸,…,AnBnx軸,BnAn+1y軸,,記點(diǎn)An的橫坐標(biāo)為(n為正整數(shù)).若,則__,__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】女本柔弱,為母則剛,說的是母親對(duì)子女無私的愛,母愛偉大,值此母親節(jié)來臨之際,某花店推出一款康乃馨花束,經(jīng)過近幾年的市場(chǎng)調(diào)研發(fā)現(xiàn),該花束在母親節(jié)的銷售量(束)與銷售單價(jià)(元)之間滿足如圖所示的一次函數(shù)關(guān)系,已知該花束的成本是每束100元.

1)求出關(guān)于的函數(shù)關(guān)系式(不要求寫的取值范圍);

2)設(shè)該花束在母親節(jié)盈利為元,寫出關(guān)于的函數(shù)關(guān)系式:并求出當(dāng)售價(jià)定為多少元時(shí),利潤(rùn)最大?最大值是多少?

3)花店開拓新的進(jìn)貨渠道,以降低成本.預(yù)計(jì)在今后的銷售中,母親節(jié)期間該花束的銷售量與銷售單價(jià)仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價(jià)為200元,且銷售利潤(rùn)不低于9900元的銷售目標(biāo),該花束每束的成本應(yīng)不超過多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的日益提高,人們?cè)絹碓较矚g過節(jié),節(jié)日的儀式感日漸濃烈.某校舉行了女神節(jié)暖心特別行動(dòng),從中隨機(jī)調(diào)査了部分同學(xué)的暖心行動(dòng),并將其分為A,B,C,D四種類型(分別對(duì)應(yīng)送服務(wù)、送鮮花、送紅包、送話語).現(xiàn)根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)該校共抽查了多少名同學(xué)的暖心行動(dòng)?

2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

3)若該校共有2400名同學(xué),請(qǐng)估計(jì)該校進(jìn)行送鮮花行動(dòng)的同學(xué)約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:?jiǎn)栴}情境:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以菱形為對(duì)象,研究菱形旋轉(zhuǎn)中的問題:已知,在菱形中,為對(duì)角線,,,將菱形繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位.旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動(dòng)中提出下列問題,請(qǐng)你幫他們解決.

1)如圖1,若旋轉(zhuǎn)角,相交于點(diǎn),相交于點(diǎn).請(qǐng)說明線段的數(shù)量關(guān)系;

2)如圖2,連接,菱形旋轉(zhuǎn)的過程中,當(dāng)互相垂直時(shí),的長(zhǎng)為______;

3)如圖3,若旋轉(zhuǎn)角為時(shí),分別連接,,過點(diǎn)分別作,,連接,菱形旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長(zhǎng)度不變的線段,請(qǐng)求出長(zhǎng)度;

操作探究:(4)如圖4,在(3)的條件下,請(qǐng)判斷以,,三條線段長(zhǎng)度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案