【題目】如圖,AB與⊙O相切于點(diǎn)C,OA,OB分別交⊙O于點(diǎn)D,E, =
(1)求證:OA=OB;
(2)已知AB=4 ,OA=4,求陰影部分的面積.

【答案】
(1)解:連接OC,

∵AB與⊙O相切于點(diǎn)C

∴∠ACO=90°,

由于 = ,

∴∠AOC=∠BOC,

∴∠A=∠B

∴OA=OB,


(2)解:由(1)可知:△OAB是等腰三角形,

∴BC= AB=2 ,

∴sin∠COB= =

∴∠COB=60°,

∴∠B=30°,

∴OC= OB=2,

∴扇形OCE的面積為: =

△OCB的面積為: ×2 ×2=2

∴S陰影=2 π


【解析】(1)連接OC,由切線的性質(zhì)可知∠ACO=90°,由于 = ,所以∠AOC=∠BOC,從而可證明∠A=∠B,從而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2 ,從可求出扇形OCE的面積以及△OCB的面積
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識(shí),掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑,以及對(duì)扇形面積計(jì)算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列是用火柴棒拼成的一組圖形,第①個(gè)圖形中有 3 根火柴棒,第②個(gè)圖形中有 9 根火柴棒,第③個(gè)圖形中有 18 根火柴棒,,按此規(guī)律排列下去,第⑥個(gè)圖形中火柴棒的根數(shù)是( .

A. 63B. 60C. 56D. 45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,ABE與∠CDE的角平分線相交于點(diǎn)F,若∠F=125°,則∠E的度數(shù)為( )

A. 110° B. 120° C. 115° D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,AD平分∠CAE交⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3 ,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?

遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先計(jì)算下列各式的值:

(1)(x﹣1)(x+1)= ;

(2)(x﹣1)(x2+x+1)=

(3)(x﹣1)(x3+x2+x+1)= ;

由此我們可以得到(x﹣1)(x99+x98+…+x+1)= ;

請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:

(1)299+298+…+2+1;

(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C、DE、F六個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(每兩隊(duì)之間賽一場(chǎng),比賽結(jié)果必須分出勝負(fù)),每天同時(shí)在三個(gè)場(chǎng)地各進(jìn)行一場(chǎng)比賽,前四天的積分表如下(E、F的積分被遮擋):

1)根據(jù)積分榜,勝一場(chǎng)積幾分,負(fù)一場(chǎng)積幾分?

2)若E隊(duì)前四天積分比F隊(duì)多4分,問EF兩隊(duì)前四天的戰(zhàn)績分別是幾勝幾負(fù)?

3)已知第一天BD對(duì)陣,第二天CE對(duì)陣,第三天DF對(duì)陣,第四天BC對(duì)陣,試分析第五天A和誰對(duì)陣比賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)某一區(qū)域進(jìn)行綠化,安排甲.乙 兩個(gè)工程隊(duì)完成;已知甲隊(duì)每天能完成綠化面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400 區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,求甲.乙兩工程隊(duì)每天能完成綠化的面積分別是多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

問題情境:在數(shù)學(xué)活動(dòng)課上,我們給出如下定義:順次連按任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖(1),在四邊形ABCD中,點(diǎn)E,F,GH分別為邊AB,BC,CD,DA的中點(diǎn).試說明中點(diǎn)四邊形EFGH是平行四邊形.

探究展示:勤奮小組的解題思路:

反思交流:

1上述解題思路中的依據(jù)1”、依據(jù)2”分別是什么?

依據(jù)1   ;依據(jù)2   ;

連接AC,若ACBD時(shí),則中點(diǎn)四邊形EFGH的形狀為   ;

創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)探究:

2)如圖(2),點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PAPB,PCPDAPBCPD,點(diǎn)EF,GH分別為邊AB,BC,CDDA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并說明理由;

3)若改變(2)中的條件,使APBCPD90°,其它條件不變,則中點(diǎn)四邊形EFGH的形狀為   

查看答案和解析>>

同步練習(xí)冊(cè)答案