【題目】在邊長為1的小正方形組成的網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,是格點三角形(頂點是網(wǎng)格線的交點).

1)畫出關(guān)于軸對稱的;

2)畫出繞原點逆時針旋轉(zhuǎn)得到的;

3)在(2)的條件下,點所經(jīng)過的路徑長為 (結(jié)果保留).

【答案】1)見解析;(2)見解析;(3

【解析】

1)關(guān)于y軸對稱的兩個點,它們橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等,描出對稱點在連接即可;

2)分別連接OA、OB、OC,逆時針分別做長度相等的線段、 與之垂直,再連接各個點即可;

3B點經(jīng)過的路徑是一個圓心角為的扇形,由弧長公式算出扇形的弧長即可.

1)如圖

2)如圖

3)B經(jīng)過的路徑是以O(shè)B為半徑,圓心角為的扇形的弧長

由勾股定理OB=

則弧長=

故應(yīng)填

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點

1)求反比例函數(shù)的解析式;

2)將直線,沿軸正方向向上平移個單位長度得到的新直線與反比例函數(shù)的圖象只有一個公共點,求新直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bxA(4,0),B(1-3)兩點,點CB關(guān)于拋物線的對稱軸對稱,過點B作直線BHx軸,交x軸于點H

1)求拋物線的表達式;

2)P是拋物線上一動點,當(dāng)ΔABP的面積為3時,求出點P的坐標(biāo);

3)若點M在直線BH上運動,點Nx軸上運動,點R是坐標(biāo)平面內(nèi)一點,當(dāng)以點CM、N、R為頂點的四邊形為正方形時,請直接寫出此時點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,是弦,點在圓外,于點,連接,,,

1)求證:的切線;

2)求證:;

3)設(shè)的面積為,的面積為,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(-2,n),B1,-2)是一次函數(shù)ykxb的圖象和反比例函數(shù)y的圖象的兩個交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出,當(dāng)kxb<時,x的取值范圍;

3)若Cx軸上一動點,設(shè)tCBCA,求t的最大值,并求出此時點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),一次函數(shù),

有下列結(jié)論:

①當(dāng)時,的增大而減小;

②二次函數(shù)的圖象與軸交點的坐標(biāo)為;

③當(dāng)時,;

④在實數(shù)范圍內(nèi),對于的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值均成立,則.

其中,正確結(jié)論的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點和點.

(1)求拋物線的解析式;

(2)為拋物線上的一個動點,點關(guān)于原點的對稱點為.當(dāng)點落在該拋物線上時,求的值;

(3)是拋物線上一動點,連接,以為邊作圖示一側(cè)的正方形,隨著點的運動,正方形的大小與位置也隨之改變,當(dāng)頂點恰好落在軸上時,求對應(yīng)的點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將背面是質(zhì)地、圖案完全相同,正面分別標(biāo)有數(shù)字-2-1,1,2的四張卡片洗勻后,背面朝上放置在桌面上.隨機抽取一張卡片,將抽取的第一張卡片上的數(shù)字作為橫坐標(biāo),第二次再從剩余的三張卡片中隨機抽取一張卡片,將抽取的第二張卡片上的數(shù)字作為縱坐標(biāo).

1)請用列表法或畫樹狀圖法求出所有可能的點的坐標(biāo);

2)求出點在x軸上方的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,平分,于點,過點,的延長線于點,的延長線于點,

1)求證:;

2)如圖,連接、,求證平分;

3)如圖,連接于點, 的值。

查看答案和解析>>

同步練習(xí)冊答案