【題目】如圖,已知E、F、G、H分別是矩形四邊AB、BC、CD、DA的中點(diǎn),且四邊形EFGH的周長為16cm,則矩形ABCD的對(duì)角線長等于________cm.

【答案】8

【解析】分析:

如圖,連接AC、BD,由三角形中位線定理結(jié)合矩形的性質(zhì)易得四邊形EFGH是菱形,從而可得EF=FG=GH=HE=4cm,這樣在△ABC,由中位線定理即可求得AC的長.

詳解:

如圖,連接AC、BD,

四邊形ABCD是矩形,

∴AC=BD,

E、F分別AB、BC的中點(diǎn),

∴EF=AC,

同理可得:HG=AC,F(xiàn)G=BD,EH=BD,

∴EF=FG=HG=EH,

四邊形EFGH的周長為16cm,

∴EF=4cm,

∴AC=2EF=8cm.

故答案為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)某中學(xué)體育組因高中教學(xué)需要本學(xué)期購進(jìn)籃球和排球共80個(gè),共花費(fèi)5800元,已知籃球的單價(jià)是80元/個(gè),排球的單價(jià)是50元/個(gè).

(1)籃球和排球各購進(jìn)了多少個(gè)(列方程組解答)?

(2)因該中學(xué)秋季開學(xué)準(zhǔn)備為初中也購買籃球和排球,教學(xué)資源實(shí)現(xiàn)共享,體育組提出還需購進(jìn)同樣的籃球和排球共40個(gè),但學(xué)校要求花費(fèi)不能超過2810元,那么籃球最多能購進(jìn)多少個(gè)(列不等式解答)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(DA、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,AB=AC。

1)若DAC的中點(diǎn),BD把三角形的周長分為24cm30cm兩部分,求ABC三邊的長;

2)若DAC上一點(diǎn),試說明ACBD+DC)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BD,CE分別是∠ABC,ACB平分線,BD,CE相交于點(diǎn)P.

(1)如圖1,如果∠A=60°,ACB=90°,則∠BPC= ;

(2)如圖2,如果∠A=60°,ACB不是直角,請(qǐng)問在(1)中所得的結(jié)論是否仍然成立?若成立,請(qǐng)證明:若不成立,請(qǐng)說明理由.

(3)小月同學(xué)在完成(2)之后,發(fā)現(xiàn)CD、BE、BC三者之間存在著一定的數(shù)量關(guān)系,于是她在邊CB上截取了CF=CD,連接PF,可證CDP≌△CFP,請(qǐng)你寫出小月同學(xué)發(fā)現(xiàn),并完成她的說理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:

(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的函數(shù)y=ax2+(a+2)x+a+1的圖象與x軸只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個(gè)棱長為的正方體的每個(gè)面等分成個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去個(gè)小正方體),所得到的幾何體的表面積是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b)a、b滿足,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O-C-B-A-O的線路移動(dòng).

(1)點(diǎn)B的坐標(biāo)為_______;當(dāng)點(diǎn)P移動(dòng)3.5秒時(shí),點(diǎn)P的坐標(biāo)為__________;

(2)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸的距離為4個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間;

查看答案和解析>>

同步練習(xí)冊(cè)答案