【題目】下列關(guān)于x的方程有實(shí)數(shù)根的是( 。

A.x2x+20B.x2+2x+10C.x12+30D.x2x+40

【答案】B

【解析】

根據(jù)根的判別式即可求出答案.

解:A14×1×2=﹣70,故方程沒有實(shí)數(shù)根.

B、44×1×10,故方程有兩個(gè)相等的實(shí)數(shù)根.

C、原方程化為(x12=﹣3,故方程沒有實(shí)數(shù)根.

D14×1×4=﹣150,故方程沒有實(shí)數(shù)根.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):165,119,5的中位數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:2x(b﹣c)﹣4y(b﹣c)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:a2﹣2a= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時(shí),四邊形AMDN是矩形;
②當(dāng)AM的值為時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市外郊一段限速公路BC上(公路視為直線),交通管理部門規(guī)定汽車的最高行駛速度不能超過60千米/時(shí),并在離該公路100米處設(shè)置了一個(gè)監(jiān)測(cè)點(diǎn)A,在如圖所示的平面直角坐標(biāo)系中,點(diǎn)A位于y軸上,測(cè)速路段BC在x軸上,點(diǎn)B在A的北偏西60°方向上,點(diǎn)C在點(diǎn)A的北偏東45°方向上,另外一條高等級(jí)公路在y軸上,OA為其中一段.

(1)求點(diǎn)B和C的坐標(biāo).
(2)一輛汽車從點(diǎn)B勻速行駛到點(diǎn)C所用時(shí)間為15秒.請(qǐng)你通過計(jì)算,判斷該汽車在這段限速路上是否超速?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】判定兩個(gè)直角三角形全等的方法有______________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+2,yx的增大而增大,則該函數(shù)的圖象一定經(jīng)過( 。

A. 第一、二、三象限 B. 第一、二、四象限

C. 第一、三、四象限 D. 第二、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,D為射線BA上一點(diǎn),連接DC,且DC=BC.

(1)如圖1,若DC⊥AC,AB=,求CD的長(zhǎng);

(2)如圖2,若E為AC上一點(diǎn),且CE=AD;連接BE,BE=2CE,連接DE并延長(zhǎng)交BC于F.求證:DF=3EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案