【題目】如圖,在△ABC中,AB=AC , 點D(不與點B重合)在BC上,點E是AB的中點,過點A作AF∥BC交DE延長線于點F , 連接AD , BF .
(1)求證:△AEF≌△BED;
(2)若BD=CD , 求證:四邊形AFBD是矩形.
【答案】
(1)
解答:證明:∵AF∥BC,∴∠AFE=∠EDB,∵E為AB的中點,∴EA=EB,在△AEF和△BED中, ,∴△AEF≌△BED(ASA).
(2)
解答:證明:∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴AD⊥BD,∴四邊形AFBD是矩形.
【解析】(1)AAS或ASA證全等;(2)根據(jù)對角線互相平分的證明四邊形AFBD是平行四邊形,再根據(jù)等腰三角形三線合一證明∠ADB=90°,進(jìn)而根據(jù)有一個角是直角的平行四邊形是矩形得證.
【考點精析】掌握矩形的判定方法是解答本題的根本,需要知道有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列幾何圖形:①三角形;②長方形;③正方體;④圓;⑤球;⑥正方形.其中平面圖形有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)x,y,z滿足x≤y<z,且 , 那么x2+y2+z2的值等于( )
A.2
B.14
C.2或14
D.14或17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動.已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時從學(xué)校出發(fā),到達(dá)君山島時,服務(wù)人員所花時間比學(xué)生少用了3.6小時,求學(xué)生步行的平均速度是多少千米/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|5﹣2x|+(5﹣y)2=0,x,y分別是方程ax﹣1=0和2y﹣b+1=0的解,求代數(shù)式(5a﹣4)2011(b﹣10)2012的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點O在AB邊上,過點O作BC的平行線交∠ABC的平分線于點D , 過點B作BE⊥BD交直線OD于點E .
(1)求證:OE=OD;
(2)當(dāng)點O在AB的什么位置時,四邊形BDAE是矩形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動.已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時從學(xué)校出發(fā),到達(dá)君山島時,服務(wù)人員所花時間比學(xué)生少用了3.6小時,求學(xué)生步行的平均速度是多少千米/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y =-x+2與反比例函數(shù)的圖象有唯一公共點. 若直線與反比例函數(shù)的圖象有2個公共點,則b的取值范圍是( )
A. b﹥2. B. -2﹤b﹤2. C. b﹥2或b﹤-2. D. b﹤-2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com