【題目】春節(jié)前小王花1200元從農(nóng)貿(mào)市場購進(jìn)批發(fā)價分別為每箱30元與50元的A,B兩種水果進(jìn)行銷售,并分別以每箱35元與60元的價格出售,設(shè)購進(jìn)A水果x箱,B水果y箱.
(1)讓小王將水果全部售出共賺了215元,則小王共購進(jìn)A、B水果各多少箱?
(2)若要求購進(jìn)A水果的數(shù)量不得少于B水果的數(shù)量,則應(yīng)該如何分配購進(jìn)A, B水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?
【答案】(1)小王共購進(jìn)A水果25箱,B水果9箱;(2)應(yīng)購進(jìn)A水果15箱、B水果15箱能夠獲得最大利潤,最大利潤為225元.
【解析】
(1)根據(jù)題意中的相等關(guān)系“A種水果x箱的批發(fā)價+B種水果y箱的批發(fā)價=1200元,A種水果賺的錢+B種水果賺的錢=215元”列方程組求解即可;
(2)先用x表示y,列出利潤w的關(guān)系式,再根據(jù)題意求出x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)求出w的最大值及購進(jìn)方案.
解:(1)根據(jù)題意,得
,即,解得.
答:小王共購進(jìn)A水果25箱,B水果9箱.
(2)設(shè)獲得的利潤為w元,根據(jù)題意得,
∵,∴,
∵A水果的數(shù)量不得少于B水果的數(shù)量,
∴,即,解得.
∴,
∵,∴w隨x的增大而減小,
∴當(dāng)x=15時,w最大=225,此時.
即應(yīng)購進(jìn)A水果15箱、B水果15箱能夠獲得最大利潤,最大利潤為225元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示的是用火柴棒搭成的一個個圖形,第一個圖形用了5根火柴,第二個圖形用了8根火柴,…,用281根火柴棒搭成了第( )個圖形.
A. 93 B. 94 C. 80 D. 81
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,的平分線交于點,交的延長線于點,取的中點,連接,,,.下列結(jié)論:①;②;③.其中正確的結(jié)論是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】|a|+|b|=|a+b|,則a,b關(guān)系是( )
A. a,b的絕對值相等
B. a,b異號
C. a+b的和是非負(fù)數(shù)
D. a、b同號或a、b其中一個為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( 。
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:5:6,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接全國文明城市創(chuàng)建,市交警隊的一輛警車在一條東西方向的公路上巡邏,如果規(guī)定向東為正,向西為負(fù),從出發(fā)點開始所走的路程為:+2,-3,+2,+1,-2,-1,-2(單位:千米)
(1)最后,這輛警車的司機(jī)如何向隊長描述他的位置?
(2)如果此時距離出發(fā)點東側(cè)2千米處出現(xiàn)交通事故,隊長命令他馬上趕往現(xiàn)場處置,則警車在此次巡邏和處理事故中共耗油多少升?(已知每千米耗油0.2升)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D、B、E四點在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O是正方形ABCD的外接圓,點E在上,連接BE、DE,點F在上連接BF、DF,BF與DE、DA分別交于點G、點H,且DA平分∠EDF.
(1)如圖1,求證:∠CBE=∠DHG;
(2)如圖2,在線段AH上取一點N(點N不與點A、點H重合),連接BN交DE于點L,過點H作HK∥BN交DE于點K,過點E作EP⊥BN,垂足為點P,當(dāng)BP=HF時,求證:BE=HK;
(3)如圖3,在(2)的條件下,當(dāng)3HF=2DF時,延長EP交⊙O于點R,連接BR,若△BER的面積與△DHK的面積的差為,求線段BR的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com