【題目】春節(jié)前小王花1200元從農(nóng)貿(mào)市場購進(jìn)批發(fā)價分別為每箱30元與50元的A,B兩種水果進(jìn)行銷售,并分別以每箱35元與60元的價格出售,設(shè)購進(jìn)A水果x箱,B水果y.

(1)讓小王將水果全部售出共賺了215元,則小王共購進(jìn)A、B水果各多少箱?

(2)若要求購進(jìn)A水果的數(shù)量不得少于B水果的數(shù)量,則應(yīng)該如何分配購進(jìn)A, B水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?

【答案】1)小王共購進(jìn)A水果25箱,B水果9箱;(2)應(yīng)購進(jìn)A水果15箱、B水果15箱能夠獲得最大利潤,最大利潤為225.

【解析】

1)根據(jù)題意中的相等關(guān)系“A種水果x箱的批發(fā)價+B種水果y箱的批發(fā)價=1200元,A種水果賺的錢+B種水果賺的錢=215元”列方程組求解即可;

2)先用x表示y,列出利潤w的關(guān)系式,再根據(jù)題意求出x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)求出w的最大值及購進(jìn)方案.

解:(1)根據(jù)題意,得

,即,解得.

答:小王共購進(jìn)A水果25箱,B水果9.

2)設(shè)獲得的利潤為w元,根據(jù)題意得,

,

A水果的數(shù)量不得少于B水果的數(shù)量,

,即,解得.

,

,wx的增大而減小,

∴當(dāng)x=15時,w最大=225,此時.

即應(yīng)購進(jìn)A水果15箱、B水果15箱能夠獲得最大利潤,最大利潤為225.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示的是用火柴棒搭成的一個個圖形,第一個圖形用了5根火柴,第二個圖形用了8根火柴,,用281根火柴棒搭成了第(個圖形.

A. 93 B. 94 C. 80 D. 81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,的平分線交于點,交的延長線于點,取的中點,連接,,,.下列結(jié)論:①;②;③.其中正確的結(jié)論是______(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|a|+|b|=|a+b|,則a,b關(guān)系是(  )

A. a,b的絕對值相等

B. a,b異號

C. a+b的和是非負(fù)數(shù)

D. ab同號或a、b其中一個為0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖要求:、過直線外一點作這條直線的垂線;、作線段的垂直平分線;

、過直線上一點作這條直線的垂線;、作角的平分線.

如圖是按上述要求排亂順序的尺規(guī)作圖:

則正確的配對是( 。

A. ﹣Ⅳ,﹣Ⅱ,﹣Ⅰ,﹣Ⅲ B. ﹣Ⅳ,﹣Ⅲ,﹣Ⅱ,﹣Ⅰ

C. ﹣Ⅱ,﹣Ⅳ,﹣Ⅲ,﹣Ⅰ D. ﹣Ⅳ,﹣Ⅰ,﹣Ⅱ,﹣Ⅲ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:A+B=∠CA:∠B:∠C156,A90°﹣∠B,A=∠BC中,能確定△ABC是直角三角形的條件有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接全國文明城市創(chuàng)建,市交警隊的一輛警車在一條東西方向的公路上巡邏,如果規(guī)定向東為正,向西為負(fù),從出發(fā)點開始所走的路程為:+2,-3,+2,+1,-2-1,-2(單位:千米)

1)最后,這輛警車的司機(jī)如何向隊長描述他的位置?

2)如果此時距離出發(fā)點東側(cè)2千米處出現(xiàn)交通事故,隊長命令他馬上趕往現(xiàn)場處置,則警車在此次巡邏和處理事故中共耗油多少升?(已知每千米耗油0.2升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD、B、E四點在同一條直線上,ADBEBCEF,BCEF

1)求證:ACDF;

2)若CD為∠ACB的平分線,∠A25°,∠E71°,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:⊙O是正方形ABCD的外接圓,點E上,連接BE、DE,點F上連接BF、DF,BFDE、DA分別交于點G、點H,且DA平分∠EDF.

(1)如圖1,求證:∠CBE=DHG;

(2)如圖2,在線段AH上取一點N(點N不與點A、點H重合),連接BNDE于點L,過點HHKBNDE于點K,過點EEPBN,垂足為點P,當(dāng)BP=HF時,求證:BE=HK;

(3)如圖3,在(2)的條件下,當(dāng)3HF=2DF時,延長EP交⊙O于點R,連接BR,若BER的面積與DHK的面積的差為,求線段BR的長.

查看答案和解析>>

同步練習(xí)冊答案