【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點(diǎn)F,E為四邊形ABCD外一點(diǎn),且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)根據(jù)已知和角平分線的定義證明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明即可;
(2)設(shè)BF=x,根據(jù)勾股定理求出x的值,再根據(jù)勾股定理求出AF,根據(jù)AC=2AF得到答案.
試題解析:(1)∵AE⊥AC,BD垂直平分AC,
∴AE∥BD,
∵∠ADE=∠BAD,
∴DE∥AB,
∴四邊形ABDE是平行四邊形;
(2)∵DA平分∠BDE,
∴∠BAD=∠ADB,
∴AB=BD=5,
設(shè)BF=x,
則52-x2=62-(5-x)2,
解得,x=,
∴AF=,
∴AC=2AF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于點(diǎn)H.動點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C以每秒2個單位長度的速度運(yùn)動.過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F.點(diǎn)E出發(fā)后,以EF為邊向上作等邊三角形EFG,設(shè)點(diǎn)E的運(yùn)動時間為t秒,△EFG和△AHC的重合部分面積為S.
(1)CE= (含t的代數(shù)式表示).
(2)求點(diǎn)G落在線段AC上時t的值.
(3)當(dāng)S>0時,求S與t之間的函數(shù)關(guān)系式.
(4)點(diǎn)P在點(diǎn)E出發(fā)的同時從點(diǎn)A出發(fā)沿A-H-A以每秒2個單位長度的速度作往復(fù)運(yùn)動,當(dāng)點(diǎn)E停止運(yùn)動時,點(diǎn)P隨之停止運(yùn)動,直接寫出點(diǎn)P在△EFG內(nèi)部時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題是()
A. 三角形兩邊之和大于第三邊
B. 三角形外角和等于360°
C. 三角形的一條中線能將三角形面積分成相等的兩部分
D. 等邊三角形既是軸對稱圖形,又是中心對稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣3,﹣2,2,1四個實(shí)數(shù)中,最大的實(shí)數(shù)是( 。
A. ﹣3 B. ﹣2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O1的半徑為3,⊙O2的半徑為r,⊙O1與⊙O2只能畫出兩條不同的公共切線,且O1O2=5,則⊙O2的半徑為r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,3)和B是坐標(biāo)平面內(nèi)的兩個點(diǎn),且它們關(guān)于直線x=-3軸對稱,則平面內(nèi)點(diǎn)B的坐標(biāo)是( )
A.(1,3)
B.(4,1)
C.(4,3)
D.(-10,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為(2,4),若點(diǎn)(﹣2,m),(3,n)在拋物線上,則m_____n(填“>”、“=”或“<”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com