在Rt△ABC中,∠C為直角,CD⊥AB于點D.BC=3,AB=5,寫出其中的一對相似三角形是          ;并寫出它的面積比        
△CAD;          9:16

試題分析:∵∠C=90°,CD⊥AB
∴△CDB∽△ADC
∴BC:AC=3:4
∴面積比為9:16.
(答案不唯一,也可以填:①△CDB∽△ACB,面積比為9:25;②△ACD∽△ABC,面積比為16:25.)
點評:此題主要考查的是相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方;找準相似三角形的對應(yīng)邊是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣4,0),點B的坐標是(0,b)(b>0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關(guān)于y軸的對稱點為P´(點P´不在y軸上),連接PP´,P´A,P´C.設(shè)點P的橫坐標為a.
(1)當b=3時,
①求直線AB的解析式;
②若點P′的坐標是(﹣1,m),求m的值;
(2)若點P在第一象限,記直線AB與P´C的交點為D.當P´D:DC=1:3時,求a的值;
(3)是否同時存在a,b,使△P´CA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平行四邊形ABCD中,AC=4,BD=6,P是BD上的.任一點,過P作EF∥AC,與平行四邊形的兩條邊分別交于點E,F(xiàn).如圖,設(shè)BP=x,EF=y,則能反映y與x之間關(guān)系的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD的外側(cè),作等邊△ADE,BE、CE分別交AD于G、H,設(shè)△CDH、△GHE的面積分別為S1、S2,則( 。
A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD四邊的中點分別為E,F(xiàn),G,H,對角線AC與BD相交于點O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,D為AC邊上的中點,AE∥BC,ED交AB于G,交BC延長線于F.若BG:GA=3:1,BC=10,則AE的長為 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:
①∠AFC=∠C;
②DE=CF;
③△ADE∽△FDB;
④∠BFD=∠CAF
其中正確的結(jié)論是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小紅作出了邊長為1的第1個正三角形△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點A2B2C2,作出了第二個正三角形△A2B2C2,算出第2個正△A2B2C2的面積,用同樣的方法作出了第3個正△A3B3C3,算出第3個正△A3B3C3的面積,依此方法作下去,由此可得第n次作出的正△AnBnCn的面積是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果兩個相似多邊形的最長邊分別為35cm和14cm,那么最短邊分別為5cm和  cm.

查看答案和解析>>

同步練習(xí)冊答案