【題目】如圖,是一條射線,、分別是和的平分線.
(1)如圖①,當(dāng)時,則的度數(shù)為________________;
(2)如圖②,當(dāng)射線在內(nèi)繞點(diǎn)旋轉(zhuǎn)時,、、三角之間有怎樣的數(shù)量關(guān)系?并說明理由;
(3)當(dāng)射線在外如圖③所示位置時,(2)中三個角:、、之間數(shù)量關(guān)系的結(jié)論是否還成立?給出結(jié)論并說明理由;
(4)當(dāng)射線在外如圖④所示位置時,、、之間數(shù)量關(guān)系是____________.
【答案】(1);(2),詳見解析;(3)不成立,,詳見解析;(4);
【解析】
(1)(2)根據(jù)角平分線定義得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)=AOB,即可得出答案;(3)根據(jù)角平分線定義得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC∠BOC)=∠AOB,即可得出答案;(4)根據(jù)角平分線定義即可求解.
解:當(dāng)射線OC在∠AOB的內(nèi)部時,
∵OD,OE分別為∠AOC,∠BOC的角平分線,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,
(1)若∠AOB=80°,則∠DOE的度數(shù)為40°.
故答案為:40;
(2)∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA.
(3)當(dāng)射線OC在∠AOB的外部時 (1)中的結(jié)論不成立.理由是:
∵OD、OE分別是∠AOC、∠BOC的角平分線
∴∠COD=∠AOC,
∠EOC=∠BOC,
∠DOE=∠COD∠EOC∠AOC∠BOC=∠AOD∠BOE.
(4)∵OD,OE分別為∠AOC,∠BOC的角平分線,
∴∠DOC=∠AOD,∠EOC=∠BOE,
∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.
故∠BOE、∠EOD、∠DOA之間數(shù)量關(guān)系是∠DOE=∠BOE+∠DOA.
故答案為:∠DOE=∠BOE+∠DOA.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+)
【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)A與B關(guān)于原點(diǎn)對稱,得出B點(diǎn)坐標(biāo),即可得出k的值;
(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.
(3)由于雙曲線是關(guān)于原點(diǎn)的中心對稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即56.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為56,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).
詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,
∴把x=4代入正比例函數(shù)y=2x,
解得y=8,∴點(diǎn)A(4,8),
把點(diǎn)A(4,8)代入反比例函數(shù)y=,得k=32,
(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對稱,
∴B點(diǎn)坐標(biāo)為(﹣4,﹣8),
由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;
(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對稱圖形,
∴OP=OQ,OA=OB,
∴四邊形APBQ是平行四邊形,
∴S△POA=S平行四邊形APBQ×=×224=56,
設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),
得P(m, ),
過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,
∵點(diǎn)P、A在雙曲線上,
∴S△POE=S△AOF=16,
若0<m<4,如圖,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=56.
∴(8+)(4﹣m)=56.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如圖,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=56.
∴×(8+)(m﹣4)=56,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴點(diǎn)P的坐標(biāo)是P(﹣7+3,16+);或P(7+3,﹣16+).
點(diǎn)睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.
【題型】解答題
【結(jié)束】
23
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC=AD=9,∠ABC=70°,點(diǎn)E,F(xiàn)分別在線段AD,DC上(點(diǎn)E與點(diǎn)A,D不重合),且∠BEF=110°.
(1)求證:△ABE∽△DEF.
(2)當(dāng)點(diǎn)E為AD中點(diǎn)時,求DF的長;
(3)在線段AD上是否存在一點(diǎn)E,使得F點(diǎn)為CD的中點(diǎn)?若存在,求出AE的長度;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=BC.AD是⊙O的直徑,AC、BD交于點(diǎn)E,P為DB延長線上一點(diǎn),且PB=BE.
(1)求證:△ABE∽△DBA;
(2)試判斷PA與⊙O的位置關(guān)系,并說明理由;
(3)若E為BD的中點(diǎn),求tan∠ADC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市電力部門對居民用電按月收費(fèi),標(biāo)準(zhǔn)如下:①用電不超過度的,每度收費(fèi)元;②用電超過度的,超過部分每度收費(fèi)元.請根據(jù)上述收費(fèi)標(biāo)準(zhǔn)解答下列問題:
(1)小明家月份用電度,應(yīng)交電費(fèi)______________元;
(2)小明家月交電費(fèi)元,則他家月份用電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貨車在公路A處加滿油后,以每小時60千米的速度勻速行駛,前往與A處相距360千米的B處.下表記錄的是貨車一次加滿油后油箱剩余油量y(升)與行駛時間x(時)之間的關(guān)系:
(1)如果y關(guān)于x的函數(shù)是一次函數(shù),求這個函數(shù)解析式(不要求寫出自變量的取值范圍)
(2)在(1)的條件下,如果貨車的行駛速度和每小時的耗油量都不變,貨車行駛4小時后到達(dá)C處,C的前方12千米的D處有一加油站,那么在D處至少加多少升油,才能使貨車到達(dá)B處卸貨后能順利返回會D處加油?(根據(jù)駕駛經(jīng)驗,為保險起見,油箱內(nèi)剩余油量應(yīng)隨時不少于10升)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,點(diǎn)、、是三個格點(diǎn)(網(wǎng)格線的交點(diǎn)叫做格點(diǎn))
(1)畫線段,畫射線,過點(diǎn)畫的平行線;
(2)過點(diǎn)畫直線的垂線,垂足為點(diǎn),則點(diǎn)到的距離是線段______的長度;
(3)線段______線段(填“>”或“<”),理由是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次運(yùn)輸任務(wù)中,一輛汽車將一批貨物從甲地運(yùn)往乙地,到達(dá)乙地卸貨后返回甲地.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的關(guān)系如圖所示.
根據(jù)圖像回答下列問題:
(1)汽車在乙地卸貨停留 (h);
(2)求汽車返回甲城時y與x的函數(shù)解析式,并寫出定義域;
(3)求這輛汽車從甲地出發(fā)4 h時與甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊AD、CD上的點(diǎn),且AE=DF,AF、BE相交于點(diǎn)P,設(shè)AB=,AE= ,則下列結(jié)論:①△ABE≌△DAF;②AF⊥BE;③;④若,連接BF,則tan∠EBF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=m(m為常數(shù)),點(diǎn)C為直線AB上一點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)M、N分別在線段BC、AC上,且滿足CN=3AN,CM=3BM.
(1)如圖,當(dāng)點(diǎn)C恰好在線段AB中點(diǎn),且m=8時,則MN=______;
(2) 若點(diǎn)C在點(diǎn)A左側(cè),同時點(diǎn)M在線段AB上(不與端點(diǎn)重合),請判斷CN+2AM -2MN的值是否與m有關(guān)?并說明理由.
(3) 若點(diǎn)C是直線AB上一點(diǎn)(不與點(diǎn)A、B重合),同時點(diǎn)M在線段AB上(不與端點(diǎn)重合),求MN長度 (用含m的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com