【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A(1,4)和點B(m,﹣2).

(1)求一次函數(shù)的關(guān)系式;

(2)求△AOB的面積;

(3)觀察圖象,寫出使得y1y2成立的自變量x的取值范圍.

【答案】(1)y1=,y2=2x+2;(2)SABO=3;(3)x1或﹣2x0.

【解析】

(1)根據(jù)待定系數(shù)法即可解決問題.(2)直線ABy軸交于點C(0,2),根據(jù)SABO=SBOC+SAOC即可解決問題.(3)根據(jù)y1≤y2時,反比例函數(shù)圖象在一次函數(shù)圖象下面,寫出自變量取值范圍即可.

(1)把點A(1,4)代入y1=,得到k=4,

y1=,把點B(m,﹣2)代入得到,m=﹣2,

A(1,4)和點B(﹣2,﹣2)代入y2=ax+b得到

,解得

y2=2x+2.

(2)直線ABy軸交于點C(0,2),

SABO=SBOC+SAOC=×2×2+×2×1=3.

(3)由圖象可知得y1y2成立的自變量x的取值范圍:x1或﹣2x0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市促銷活動,將車厘子、波羅蜜、山竹三種水果采用三種不同方式搭配成禮盒,分別是蒸蒸日上禮盒、獨占鰲頭禮盒、吉祥如意禮盒,將禮盒進行銷售,每盒的總成本為盒中車厘子、波羅蜜、山竹三種水果成本之和,盒子成本忽略不計,蒸蒸日上每盒分別裝有車厘子、波羅蜜、山竹三種水果8千克,4千克,3千克;獨占鰲頭每盒裝有車厘子、波羅蜜、山竹三種水果3千克,8千克,6千克;蒸蒸日上每盒的總成本是每千克車厘子水果成本的14倍,每盒蒸蒸日上的銷售利潤是60%,每盒獨占鰲頭的售價是成本的倍,每盒吉祥如意在成本上提高60%標價后打八折出售,獲利為每千克車厘子水果成本的2.8倍,當銷售蒸蒸日上、獨占鰲頭、吉祥如意三種禮盒的數(shù)量之比為525,則銷售的總利潤率為___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時間,然后分別按原速一同駛往甲地后停車.設(shè)慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示yx之間的函數(shù)圖象,請根據(jù)圖象解決下列問題:

1)甲乙兩地之間的距離為 千米;

2)求快車和慢車的速度;

3)求線段DE所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,是邊上的兩點,,,則的度數(shù)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,A0,1),B20),C42

1)在坐標系中畫出ABC及其關(guān)于y軸對稱的ABC;

2)設(shè)點Px軸上,且ABP的面積是ABC面積的,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°AB=AC,AD=AE,點C,DE三點在同一條直線上,連接BDBE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,與軸交于點,頂點為,以為直徑作D.下列結(jié)論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為(  )

A. 12 B. 6 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,已知,,在的邊上取兩點、(點是不同于點的點),若以、為頂點的三角形與全等,則符合條件的點的坐標為__________

查看答案和解析>>

同步練習(xí)冊答案