【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點,S△DEF=4,S△ABC=
【答案】(1)∠DEF=∠B,理由見解析;(2)32
【解析】
(1)延長EF交BC于G,根據(jù)平行四邊形的判定和性質(zhì)即可得到結(jié)論;
(2)根據(jù)三角形一邊的中線平分三角形的面積,即可得到結(jié)論.
(1)∠DEF=∠B,理由如下:
延長EF交BC于G,
∵∠BDC=∠EFD,
∴EF∥BD,
∵∠AED=∠ACB,
∴DE∥BC,
∴四邊形DEGB是平行四邊形,
∴∠DEF=∠B;
(2)∵F是CD邊上的中點,S△DEF=4,
∴S△DEC=2S△DEF=8,
∵E是AC邊上的中點,
∴S△ADC=2S△DEC=16,
∵D是AB邊上的中點,
∴S△ABC=2S△ACD=32.
科目:初中數(shù)學 來源: 題型:
【題目】某種商品A的零售價為每件900元,為了適應(yīng)市場競爭,商店按零售價的九折優(yōu)惠后,再讓利40元銷售,仍可獲利10%.
(1)這種商品A的進價為多少元?
(2)現(xiàn)有另一種商品B進價為600元,每件商品B也可獲利10%.對商品A和B共進貨100件,要使這100件商品共獲純利6670元,則需對商品A、B分別進貨多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們在過去的學習中已經(jīng)發(fā)現(xiàn)了如下的運算規(guī)律:
(1)15×15=1×2×100+25=225;
(2)25×25=2×3×100+25=625;
(3)35×35=3×4×100+25=1225;
……
按照這種規(guī)律,第n個式子可以表示為
A. n×n=×(+1)×100+25=n2
B. n×n=×(+1)×100+25=n2
C. (n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25
D. (10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是.
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…分別在x軸上,點B1,B2,B3,…分別在直線y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,則點A2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【探究證明】某班數(shù)學課題學習小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進行探究,提出下列問題,請你給出證明.
(1)某班數(shù)學課題學習小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進行探究,提出下列問題,請你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F(xiàn),GH分別交AD,BC于點G,H.求證: = ;
(2)【結(jié)論應(yīng)用】如圖2,在滿足(1)的條件下,又AM⊥BN,點M,N分別在邊BC,CD上,若 = ,則 的值為;
(3)【聯(lián)系拓展】如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點M,N分別在邊BC,AB上,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與x軸交于點A,與y軸交于點B,點C與點A關(guān)于y軸對稱.
(1)求直線BC的函數(shù)表達式;
(2)設(shè)點M是x軸上的一個動點,過點M作y軸的平行線,交直線AB于點P,交直線BC于點Q,連接BM.
①若∠MBC=90°,求點P的坐標;
②若△PQB的面積為,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一盛有部分水的圓柱形小水杯放入事先沒有水的大圓柱形容器內(nèi),現(xiàn)用一注水管沿大容器內(nèi)壁勻速注水(如圖所示),則小水杯內(nèi)水面的高度h(cm)與注水時間t(min)的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com