【題目】如圖,點C為半圓的中點,AB是直徑,點D是半圓上一點,AC,BD交于點E.若AD=1,BD=7,則CE的長為_____.

【答案】.

【解析】

直徑所對應(yīng)的的圓周角為90°,再利用勾股定理求出AB的值,然后利用C點為半圓的中點判斷出ΔABC為等腰直角三角形,利用勾股定理求出BC的值,最后利用三角形相似,對應(yīng)邊成比例求出DE的長度.

C為半圓的中點 ,∴AC=BC, AB是直徑 ,∴∠C=D=90°,RtADB中, AD=1,BD=7 ,∴AB=5,在等腰RtACB中,∴AC=BC=5,∵∠CBE=CAD,C=D,∴△ADE∽△BCE,∴=, =,CE=5DE,BE=7-DE,RtCEB,利用勾股定理得:52+5DE2=(7-DE)2,解得 :DE=-(舍去)或DE=, CE=

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,垂足為點,將平行四邊形折疊,使點落在點的位置,點落在點的位置,折痕為.

1)求證:;

2)若,求的度數(shù);

3)連接,求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點,點,點.若正方形繞點順時針旋轉(zhuǎn),得正方形,記旋轉(zhuǎn)角為.

(Ⅰ)如圖①,當(dāng)時,求的交點的坐標(biāo);

(Ⅱ)如圖②,當(dāng)時,求點的坐標(biāo);

(Ⅲ)若為線段的中點,求長的取值范圍(直接寫出結(jié)果即可)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線m為常數(shù))交y軸于點A,與x軸的一個交點在23之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數(shù)圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關(guān)于直線的對稱點為C,點D、E分別在x軸和y軸上,當(dāng)時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初中部舉行詩詞大會預(yù)選賽,學(xué)校對參賽同學(xué)獲獎情況進行統(tǒng)計,繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:

1)參加此次詩詞大會預(yù)選賽的同學(xué)共有 人;

2)在扇形統(tǒng)計圖中,“三等獎”所對應(yīng)的扇形的圓心角的度數(shù)為

3)將條形統(tǒng)計圖補充完整;

4)若獲得一等獎的同學(xué)中有來自七年級,來自九年級,其余的來自八年級,學(xué)校決定從獲得一等獎的同學(xué)中任選兩名同學(xué)參加全市詩詞大會比賽,請通過列表或樹狀圖方法求所選兩名同學(xué)中,恰好是一名七年級和一名九年級同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)拓展課上,老師給出如下定義:如果三角形有一邊上的中線長恰好等于該邊長的1.5倍,那么稱這個三角形為趣味三角形

理解:

1)如圖1,在ABC中,AB=AC=,BC=2,試判斷ABC是否為趣味三角形,并說明理由.

2)如圖2,已知ABC趣味三角形,AD,BE,CF分別是BCAC,AB邊上的中線,且AD=BC,試探究BECF之間的位置關(guān)系.

3)如圖3,直線l1l2 , l1l2之間的距離為2,點B,C在直線l1上,點A在直線l2上,AD,BECF分別是ABC的邊BC,AC,AB上的中線.若ABC趣味三角形,BC=2.求BE2+CF2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點、(點在點右側(cè)),點為拋物線的頂點.軸的正半軸上,軸于點,繞點順時針旋轉(zhuǎn)得到,點恰好旋轉(zhuǎn)到點,連接.

1)求點、的坐標(biāo);

2)求證:四邊形是平行四邊形;

3)如圖2,過頂點軸于點,點是拋物線上一動點,過點軸,點為垂足,使得相似(不含全等).

①求出一個滿足以上條件的點的橫坐標(biāo);

直接回答這樣的點共有幾個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已如拋物線y=-x2+3x+m,其中m為常數(shù)

I)當(dāng)拋物線經(jīng)過點(35)時,求該拋物線的解析式。

II)當(dāng)拋物線與直線y=x+3m只有一個交點時,求該拋物線的解析式。

III)當(dāng)0x4時,試通過m的取值范圍討論拋物線與直線y=x+2的公共點的個數(shù)的情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,EBC上一定點,BE=6,FAB上一動點,BEF沿EF折疊B落在點B當(dāng)AFB恰好為直角三角形時,BD的長為?

查看答案和解析>>

同步練習(xí)冊答案