【題目】已知,求的最大值與最小值.

【答案】x+y最大值為6,最小值為-3

【解析】

先將|x+2|+|1-x|=9-|y-5|-|1+y|化為|x+2|+|1-x|+|y-5|+|1+y|=9.再對x、y的取值進行分類討論:當x≥1,y≥5時;當1x≥-25y≥-1時;當x-2,y-1時.最后求出最大最小值.

|x+2|+|1-x|=9-|y-5|-|1+y|,

|x+2|+|1-x|+|y-5|+|1+y|=9,

x≥1,y≥5時,x+2+x-1+y-5+y+1=9

2x+2y=12 x+y=6,

1x≥-2,5y≥-1時,

x+2+1-x+5-y+y+1=9,但-3x+y6,

x-2y-1時,

-x-2+1-x+5-y-1-y=9,

-2x-2y=6 x+y=-3,

x+y最大值為6,最小值為-3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司經銷甲種型號電腦,今年三月份的電腦售價比去年同期每臺降價1000元.如果賣出相同數(shù)量的電腦,去年的銷售額為10萬元,那么今年的銷售額只有8萬元.

1)今年三月份甲種型號電腦每臺的售價為多少元?

2)為增加收入,電腦公司決定經銷乙種型號電腦.已知甲種型號電腦每臺的進價為3500元,乙種型號電腦每臺的進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種型號的電腦共15臺,則有幾種進貨方案?

3)如果乙種型號電腦每臺的售價為3800元,為打開乙種型號電腦的銷路,公司決定每售出一臺乙種型號電腦,返還顧客現(xiàn)金元,要使(2)中所有方案的獲利相同,那么的值應是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB4,BC6,∠ABC60°,點PABCD內一點,點QBC邊上,則PA+PD+PQ的最小值為( )

A.B.6+2C.5D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滿足( )時,的值取得最。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家裝公司聘請兩隊搬運工來搬運貨物,他們都只能連續(xù)搬運5小時,甲隊于某日0時開始搬運,過了1小時,乙隊也開始搬運,如圖,線段OG表示甲隊搬運量y(千克)與時間x(時)的函數(shù)圖象,線段EF表示乙隊搬運量y(千克)與時間x(時)的函數(shù)圖象

1)求乙隊搬運量y與時間x之間的函數(shù)關系式.

2)如果甲、乙兩隊各連續(xù)搬運5小時,那么乙隊比甲隊多搬運多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,拋物線y=x22mx+m2+m的頂點為A,與y軸交于點B.當拋物線不經過坐標原點時,分別作點A、B關于原點的對稱點CD,連結AB、BC、CDDA

1)分別用含有m的代數(shù)式表示點A、B的坐標.

2)判斷點B能否落在y軸負半軸上,并說明理由.

3)連結AC,設l=AC+BD,求lm之間的函數(shù)關系式.

4)過點Ay軸的垂線,交y軸于點P,以AP為邊作正方形APMN,MNAP上方,如圖②,當正方形APMN與四邊形ABCD重疊部分圖形為四邊形時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(M不與點B,C重合),過點CCNDMAB于點N,連結OMONMN.下列五個結論:CNB≌△DMC;ONOMONOM;AB2,則SOMN的最小值是1AN2+CM2MN2.其中正確結論是_____;(只填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,OP是MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形請你參考這個作全等三角形的方法,解答下列問題:

1如圖2,在ABC中,ACB是直角,B=60° AD、CE分別是BAC、BCA的平分線,AD、CE相交于點F請你判斷并寫出FE與FD之間的數(shù)量關系;

2如圖3,在ABC中,如果ACB不是直角,而1中的其他條件不變,在1中所得結論是否仍然成立?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1)(﹣7.3+5

23﹣(﹣5

3

4)(﹣12÷(﹣

54.7﹣(﹣8.9)﹣7.5+(﹣6

6)﹣3.5÷×||

查看答案和解析>>

同步練習冊答案