【題目】如圖,將一塊三角板和半圓形量角器按圖中方式疊放,三角板一邊與量角器的零刻度線所在直線重合,重疊部分的量角器。 )對應(yīng)的圓心角(∠AOB)為120°,OC的長為2cm,則三角板和量角器重疊部分的面積為

【答案】 +2 (cm2
【解析】解:∵∠AOB=120°, ∴∠BOC=60°,
在Rt△OBC中,OC=2cm,∠BOC=60°,
∴∠OBC=30°,
∴OB=4cm,BC=2 cm,
則S扇形OAB= = (cm2),SOBC= OC×BC=2 (cm2),
故S重疊=S扇形OAB+SOBC= +2 (cm2
所以答案是: +2 (cm2).
【考點精析】本題主要考查了扇形面積計算公式的相關(guān)知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達(dá)終點后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時時,甲、乙在途中相遇;

②出發(fā)1.5小時時,乙比甲多行駛了60千米;

③出發(fā)3小時時,甲、乙同時到達(dá)終點;

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點B前進(jìn)(甲到達(dá)點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關(guān)系如圖所示.則甲到B點時,乙距B點的距離是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《2012年衢州市國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報》(2013年2月5日發(fā)布),衢州市固定資產(chǎn)投資的相關(guān)數(shù)據(jù)統(tǒng)計圖如下:
根據(jù)以上信息,解答下列問題:
(1)求2012年的固定資產(chǎn)投資增長速度(年增長速度即年增長率);
(2)求2005﹣2012年固定資產(chǎn)投資增長速度這組數(shù)據(jù)的中位數(shù);
(3)求2006年的固定資產(chǎn)投資金額,并補(bǔ)全條形圖;
(4)如果按照2012年的增長速度,請預(yù)測2013年衢州市的固定資產(chǎn)投資金額可達(dá)到多少億元(精確到1億元)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計劃從商店購買同一品牌的鋼筆和文具盒,已知購買一個文具盒比購買一個鋼筆多用20元,若用400元購買文具盒和用160元購買鋼筆,則購買文具盒的個數(shù)是購買鋼筆個數(shù)的一半.
(1)分別求出該品牌文具盒、鋼筆的定價;
(2)經(jīng)商談,商店給予學(xué)校購買一個該品牌文具盒贈送一個該品牌鋼筆的優(yōu)惠,如果學(xué)校需要鋼筆的個數(shù)是文具盒個數(shù)的2倍還多8個,且學(xué)校購買文具盒和鋼筆的總費用不超過670元,那么該學(xué)校最多可購買多少個該品牌文具盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上.另一個頂點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖,則三角板的最大邊的長為(
A.3cm
B.6cm
C. cm
D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D是BC邊上一動點,點E,F(xiàn)分別在AB,AC邊上,連接AD,DE,DF,且∠ADE=∠ADF=60°.

小明通過觀察、實驗,提出猜想:在點D運動的過程中,始終有AE=AF,小明把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:利用AD是∠EDF的角平分線,構(gòu)造△ADF的全等三角形,然后通過等腰三角形的相關(guān)知識獲證.

想法2:利用AD是∠EDF的角平分線,構(gòu)造角平分線的性質(zhì)定理的基本圖形,然后通過全等三角形的相關(guān)知識獲證.

想法3:將△ACD繞點A順時針旋轉(zhuǎn)至△ABG,使得AC和AB重合,然后通過全等三角形的相關(guān)知識獲證.

請你參考上面的想法,幫助小明證明AE=AF.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形AEFG都是菱形,其中點C在AF上,點E,G分別在BC,CD上,若∠BAD=135°,∠EAG=75°,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

在學(xué)習(xí)可化為一元一次方程的分式方程及其解法的過程中,老師提出一個問題:若關(guān)于x的分式方程=1的解為正數(shù),求a的取值范圍.

經(jīng)過獨立思考與分析后,小杰和小哲開始交流解題思路如下:

小杰說:解這個關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.

小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.

(1)請回答:   的說法是正確的,并簡述正確的理由是   ;

(2)參考對上述問題的討論,解決下面的問題:

若關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案