【題目】如圖,在方格紙中,△ABC的三個頂點及D、E、F、G、H、五個點分別位于小正方形的頂點上.
(1)畫出△ABC繞點B順時針方向旋轉90°后的圖形.
(2)先從E、F、G、H四個點中任意取兩個不同的點,再和D點構成三角形,求所得三角形與△ABC面積相等的概率是 .
科目:初中數學 來源: 題型:
【題目】若將一副三角板按如圖所示的方式放置,則下列結論不正確的是( )
A.∠1=∠3
B.如果∠2=30°,則有AC∥DE
C.如果∠2=30°,則有BC∥AD
D.如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是矩形ABCD內的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點在矩形的對角線上.
其中正確的結論的序號是(把所有正確結論的序號都填在橫線上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將兩塊直角三角尺的直角頂點C疊放在一起.
(1)寫出以C為頂點的相等的銳角,并說明理由;
(2)若射線CB平分∠DCE,求∠ACE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,P是矩形ABCD內的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論:①S1+S4=S2+S3;②S2+S4=S1+S2;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則S3=S4 , 其中正確結論的序號是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結AD并延長,與BC相交于點E。
(1)若BC=,CD=1,求⊙O的半徑;
(2)取BE的中點F,連結DF,求證:DF是⊙O的切線。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com