如圖,拋物線,與軸交于點,且

1.(1)求拋物線的解析式;

2.(2)探究坐標軸上是否存在點,使得以點為頂點的三角形為直角三角形?

    若存在,求出點坐標,若不存在,請說明理由;

3.(3)直線軸于點,為拋物線頂點.若

     的值.

 

 

1.(I),且

代入,得

 

2.(II)①當可證

      

②同理: 如圖當 

③當 

綜上,坐標軸上存在三個點,使得以點為頂點的三角形為直角三角形,分別是,

3.(III)

 .

解析:略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線:軸交于點A(-2,0)和B(4,0)、與軸交于點C.

(1)求拋物線的解析式;

(2)T是拋物線對稱軸上的一點,且△ACT是以AC為底的等腰三角形,求點T的坐標;

(3)點M、Q分別從點A、B以每秒1個單位長度的速度沿軸同時出發(fā)相向而行.當點M到原點時,點Q立刻掉頭并以每秒個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動.過點M的直線l⊥軸,交AC或BC于點P.求點M的運動時間t(秒)與△APQ的面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線,與軸交于點,且

【小題1】(1)求拋物線的解析式;
【小題2】(2)探究坐標軸上是否存在點,使得以點為頂點的三角形為直角三角形?
若存在,求出點坐標,若不存在,請說明理由;
【小題3】(3)直線軸于點,為拋物線頂點.若,
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京育才學校九年級第一學期期中考試數(shù)學卷 題型:解答題

如圖,拋物線,與軸交于點,且

【小題1】(1)求拋物線的解析式;
【小題2】(2)探究坐標軸上是否存在點,使得以點為頂點的三角形為直角三角形?
若存在,求出點坐標,若不存在,請說明理由;
【小題3】(3)直線軸于點,為拋物線頂點.若,
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京育才學校九年級第一學期期中考試數(shù)學卷 題型:解答題

如圖,拋物線,與軸交于點,且

1.(1)求拋物線的解析式;

2.(2)探究坐標軸上是否存在點,使得以點為頂點的三角形為直角三角形?

     若存在,求出點坐標,若不存在,請說明理由;

3.(3)直線軸于點,為拋物線頂點.若,

     的值.

 

查看答案和解析>>

同步練習冊答案