【題目】已知拋物線和直線l在同一直角坐標系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1x1,y1)、P2x2,y2)是拋物線上的點,P3x3,y3)是直線l上的點,且﹣1<x1x2,x3<﹣1,則y1y2、y3的大小關(guān)系為(  )

A. y1y2y3 B. y3y1y2 C. y3y2y1 D. y2y1y3

【答案】D

【解析】因為拋物線的對稱軸為直線x=-1,開口向下,P1x1,y1),P2x2,y2)是拋物線上的點,且-1<x1x2根據(jù)二次函數(shù)的性質(zhì):在對稱軸的右側(cè),yx的增大而減小,可得y2 y1;P3x3,y3)是直線l上的點,直線yx的增大而減小,且x3<-1,由圖象可知,直線上x3對應(yīng)的函數(shù)值y3大于-1對應(yīng)的函數(shù)值,又因x=-1時,拋物線的頂點最高,可得y3最大,所以y2y1y3故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(0,1),B(4,1),Cx軸正半軸上一點,且AC平分∠OAB.

(1)求證:∠OAC∠OCA

(2)如圖,若分別作∠AOC的三等分線及∠OCA的外角的三等分線交于點P,即滿足∠POC=∠AOC,∠PCE=∠ACE,求∠P的大;

(3)如圖③,在(2)中,若射線OP、CP滿足∠POC=∠AOC,∠PCE=∠ACE,猜想∠OPC的大小,并證明你的結(jié)論(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在正方形ABCD中,AB=6,P為邊CD上一點,過P點作PE⊥BD于點E,連接BP.

(1) 如圖1,求 的值;

(2)O為BP的中點,連接CO并延長交BD于點F.

① 如圖2,連接OE,求證:OE⊥OC;

② 如圖3,若,求DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.

(1)11日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米?

(2)16日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN已知點C周圍200 m范圍內(nèi)為原始森林保護區(qū),MN上的點A處測得CA的北偏東45°方向上,A向東走600 m到達B測得C在點B的北偏西60°方向上.

1MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)

2若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于A2,1),B1n)兩點.

1)試確定上述反比例函數(shù)和一次函數(shù)的表達式.

2)求△AOB的面積.

3)比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點,與軸的另一個交點為,將拋物線向右平移個單位得到拋物線, 軸于, 兩點(點在點的左邊),交軸于點

)求拋物線的解析式及頂點坐標.

)以為斜邊向上作等腰直角三角形,當點落在拋物線的對稱軸上時,求拋物線的解析式.

)若拋物線的對稱軸存在點,使為等邊三角形,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格):

(1)畫出△ABCBC邊上的高AD;

(2)畫出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;

(3)畫一個△BCP(要求各頂點在格點上,P不與A點重合),使其面積等于△ABC的面積.并回答,滿足這樣條件的點P________.

查看答案和解析>>

同步練習冊答案