【題目】為了從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,對(duì)他們的射擊水平進(jìn)行了測(cè)驗(yàn),兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
如果你是教練你會(huì)選拔誰參加比賽?為什么?
【答案】乙同學(xué)的成績(jī)較穩(wěn)定,應(yīng)選乙參加比賽
【解析】試題比較甲、乙兩人的成績(jī)的方差作出判斷.
試題解析:
=(7+8+6+8+6+5+9+10+4+7)=7;
S甲2= [(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;
=(9+5+7+8+6+8+7+6+7+7)=7;
S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;
∴因?yàn)榧、乙兩名同學(xué)射擊環(huán)數(shù)的平均數(shù)相同,乙同學(xué)射擊的方差小于甲同學(xué)的方差,
∴乙同學(xué)的成績(jī)較穩(wěn)定,應(yīng)選乙參加比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)-3-7;
(2) ;
(3)-0.5+(-15.5)-(-17)-|-12|;
(4) ;
(5) ;
(6)(用簡(jiǎn)便方法計(jì)算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的半徑為個(gè)單位長(zhǎng)度.?dāng)?shù)軸上每個(gè)數(shù)字之間的距離為1個(gè)單位長(zhǎng)度,在圓的4等分點(diǎn)處分別標(biāo)上點(diǎn)A,B,C,D.先讓圓周上的點(diǎn)A與數(shù)軸上表示-1的點(diǎn)重合.
(1)圓的周長(zhǎng)為多少?
(2)若該圓在數(shù)軸上向右滾動(dòng)2周后,則與點(diǎn)A重合的點(diǎn)表示的數(shù)為多少?
(3)若將數(shù)軸按照順時(shí)針方向繞在該圓上,(如數(shù)軸上表示-2的點(diǎn)與點(diǎn)B重合,數(shù)軸上表示-3的點(diǎn)與點(diǎn)C重合…),那么數(shù)軸上表示-2018的點(diǎn)與圓周上哪個(gè)點(diǎn)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的定價(jià)是每千克5元,元旦期間,該商品推出優(yōu)惠活動(dòng),若一次購(gòu)買該商品的數(shù)量超過2千克,則超過2千克的部分,價(jià)格打8折;若一次購(gòu)買的數(shù)量不超過2千克(含2千克),仍按原價(jià)付款
(1)根據(jù)題意,填寫下表
購(gòu)買的數(shù)量(千克) | 1.5 | 2 | 3.5 | 4 | … |
付款金額(元) | 7.5 | 16 | … |
(2)若一次購(gòu)買的數(shù)量為千克,請(qǐng)你寫出付款金額(元)與(千克)之間的關(guān)系式
(3)若某顧客一次購(gòu)買該商品花費(fèi)了68元,求該顧客購(gòu)買商品的數(shù)量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)邊長(zhǎng)分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是( 。
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com