如圖,將邊長(zhǎng)為12cm的正方形紙片ABCD沿EF折疊(點(diǎn)E、F分別在邊AB、CD上),使點(diǎn)B精英家教網(wǎng)落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P.
(1)若AM=5,①求AE的長(zhǎng);②求折痕EF的長(zhǎng).
(2)隨著落點(diǎn)M在AD邊上取遍所有的位置(點(diǎn)M不與A、D重合),△PDM的周長(zhǎng)是否發(fā)生變化?請(qǐng)說(shuō)明理由.
分析:(1)①設(shè)AE=x,由折疊的性質(zhì)可知EM=BE=12-x,在Rt△AEM中,運(yùn)用勾股定理求AE;②過(guò)點(diǎn)F作FG⊥AB,垂足為G,連接BM,根據(jù)折疊的性質(zhì)得點(diǎn)B和點(diǎn)M關(guān)于EF對(duì)稱(chēng),即BM⊥EF,又AB=FG,∠A=∠EGF=90°,可證△ABM≌△GFE,把求EF的問(wèn)題轉(zhuǎn)化為求BM;
(2)設(shè)AE=x,AM=y,則BE=EM=12-x,MD=12-y,在Rt△AEM中,由勾股定理得出x、y的關(guān)系式,可證Rt△AEM∽R(shí)t△DMP,根據(jù)相似三角形的周長(zhǎng)比等于相似比求△DMP的周長(zhǎng).
解答:解:(1)①設(shè)AE=x,由折疊的性質(zhì)可知EM=BE=12-x,
在Rt△AEM中,由勾股定理,得AE2+AM2=EM2,即x2+52=(12-x)2
解得x=
119
24
,即AE=
119
24
cm;
②過(guò)點(diǎn)F作FG⊥AB,垂足為G,連接BM,精英家教網(wǎng)
∵四邊形ABCD是正方形,
∴AB=BC,
∵四邊形BCFG是矩形,
∴FG=BC,
∴AB=FG,
∵BM⊥FE,
∴∠EBM+∠BEF=90°,
∵∠BMA+∠EBM=90°,
∠BEF=∠BMA,
又∵∠A=∠EGF=90°,
∴△ABM≌△GFE,
∴EF=BM=
AB2+AM2
=
122+52
=13cm;

(2)△PDM的周長(zhǎng)不變,為24cm.
理由:設(shè)AE=x,AM=y,則BE=EM=12-x,MD=12-y,
在Rt△AEM中,由勾股定理得AE2+AM2=EM2,
x2+y2=(12-x)2,解得144-y2=24x,
∵∠EMP=90°,∠A=∠D,
∴Rt△AEM∽R(shí)t△DMP,
AE+EM+AM
DM+MP+DP
=
AE
MD
,即
x+12-x+y
DM+MP+DP
=
x
12-y
,
解得DM+MP+DP=
144-y2
x
=24.
點(diǎn)評(píng):本題考查了折疊的性質(zhì).關(guān)鍵是根據(jù)折疊前后對(duì)應(yīng)線(xiàn)段相等怎么全等三角形,根據(jù)角的互余關(guān)系證明相似三角形,結(jié)合勾股定理,相似三角形的性質(zhì)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)邊長(zhǎng)為1的正方形OA1B1C1的頂點(diǎn)A1在x軸的正半軸上,如圖將正方形OA1B1C1繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)75°得正方形OABC,使點(diǎn)B恰好落在函數(shù)y=ax2(a<0)的圖象上,則a的值為( 。
A、-
2
3
B、-
1
2
C、-2
D、-
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將邊長(zhǎng)為
2
的正方形ABCD沿對(duì)角線(xiàn)AC平移,使點(diǎn)A移至線(xiàn)段AC的中點(diǎn)A′處,得新正方形A′B′C′D′,新正方形與原正方形重疊部分(圖中陰影部分)的面積是( 。
A、
2
B、
1
2
C、1
D、
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)都為1cm的正方形按如圖所示擺放,點(diǎn)A1、A2、A3、A4分別是正方形的中心,則前5個(gè)這樣的正方形重疊部分的面積和為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角形板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線(xiàn)交于點(diǎn)E,四邊形AECF的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角形板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線(xiàn)交于點(diǎn)E,四邊形AECF的面積是


  1. A.
    16
  2. B.
    12
  3. C.
    8
  4. D.
    4

查看答案和解析>>

同步練習(xí)冊(cè)答案