【題目】某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長為米某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長為

用含的代數(shù)式表示平行于墻的一邊的長為________米,的取值范圍為________;

這個(gè)苗圃園的面積為平方米時(shí),求的值.

【答案】(1);(2)11.

【解析】

(1)由籬笆的總長度-垂直于墻的兩邊的籬笆長度=平行于墻的這邊的籬笆長度,根據(jù)墻的長度就可以確定x的取值范圍;(2)由長方形的面積公式建立方程求出其解即可.

(1)(30-2x),6≤x<15;

(2)由題意得,

x(30-2x)=88,

解得:x1=4,x2=11,

因?yàn)?/span>6≤x<15,

所以x=4不符合題意,舍去,故x的值為11米.

答:x=11.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校創(chuàng)造節(jié)插花藝術(shù)比賽中同學(xué)們制作了若干個(gè)甲、乙、丙三種造型的花籃.甲種花籃由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙種花籃由6朵玫瑰花、8朵水仙花搭配而成.丙種花籃由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.這些花籃一共用了240朵玫瑰花,300朵百合花,則水仙花一共用了_____朵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一兒童節(jié)前夕,蘄黃縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)浠泉鎮(zhèn)浠泉小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6 名,7 名,8 名,10 名,12 名這五種情形,并將統(tǒng)計(jì)結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)上述統(tǒng)計(jì)圖,解答下列問題:

1)該校有多少個(gè)班級(jí)?并補(bǔ)全條形統(tǒng)計(jì)圖;

2)該校平均每班有多少名留守兒童?留守兒童人數(shù)的眾數(shù)是多少?

3)若該鎮(zhèn)所有小學(xué)共有60 個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行慢跑練習(xí),慢跑路程y(米)與所用時(shí)間t(分鐘)之間的關(guān)系如圖所示,下列說法錯(cuò)誤的是(

A. 2分鐘,乙的平均速度比甲快

B. 5分鐘時(shí)兩人都跑了500

C. 甲跑完800米的平均速度為100/

D. 甲乙兩人8分鐘各跑了800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,BC=8

1)求對(duì)角線AC的長;

2)點(diǎn)E是線段CD上的一點(diǎn),把ADE沿著直線AE折疊.點(diǎn)D恰好落在線段AC上,與點(diǎn)F重合,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB = AC,點(diǎn)D是邊BC的中點(diǎn),過點(diǎn)A、D分別作BC與AB的平行線,相交于點(diǎn)E,連結(jié)EC、AD.

求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上

1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;寫出A1、B1、C1的坐標(biāo)。

2)畫出△ABC向下平移5個(gè)單位后的△A2B2C2,并求出平移過程中線段AC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,AB是⊙O的直徑,延長AB到點(diǎn)E,連接EC,使得∠BCE=BAC

(1)求證:EC是⊙O的切線;

(2)過點(diǎn)AADEC的延長線于點(diǎn)D,AD=5,DE=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊上有一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過點(diǎn)作直線截,使截得的三角形與相似,滿足條件的直線共有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案