【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長(zhǎng)均為1):
(1)請(qǐng)畫出△ABC沿軸向右平移3個(gè)單位長(zhǎng)度,再沿軸向上平移2個(gè)單位長(zhǎng)度后的(其中分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出三點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
【答案】(1)見解析;(2)(0,5),(-1,3),(4,0);(3)三角形的面積為6.5;
【解析】
(1)根據(jù)圖形的平移原則平移圖形即可.
(2)根據(jù)平移后圖形,寫出點(diǎn)的坐標(biāo)即可.
(3)根據(jù)直角坐標(biāo)系中,長(zhǎng)方形的面積減去三個(gè)直角三角形的面積計(jì)算即可.
解:(1)根據(jù)沿軸向右平移3個(gè)單位長(zhǎng)度,再沿軸向上平移2個(gè)單位長(zhǎng)度,可得圖形如下圖所示:
(2)根據(jù)上圖可得三點(diǎn)的坐標(biāo)分別為:(0,5),(-1,3),(4,0)
(3)根據(jù)三角形ABC的面積等于正方形的面積減去三個(gè)三角形的面積可得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
在平面直角坐標(biāo)系中,二元一次方程x-y=0的一個(gè)解可以用一個(gè)點(diǎn)(1,1)表示,二元一次方程有無數(shù)個(gè)解,以方程x-y=0的解為坐標(biāo)的點(diǎn)的全體叫作方程x-y=0的圖象。一般地,在平面直角坐標(biāo)系中,任何一個(gè)二元一次方程的圖象都是一條直線,我們可以把方程x-y=0的圖象稱為直線x-y=0。
直線x-y=0把坐標(biāo)平面分成直線上方區(qū)域,直線上,直線下方區(qū)域三部分,如果點(diǎn)M(x0,y0)的坐標(biāo)滿足不等式x-y≤0,那么點(diǎn)M(x0,y0)就在直線x-y=0的上方區(qū)域內(nèi)。特別地,x=k(k為常數(shù))表示橫坐標(biāo)為k的點(diǎn)的全體組成的一條直線,y=m(m為常數(shù))表示縱坐標(biāo)為m的點(diǎn)的全體組成的一條直線。
請(qǐng)根據(jù)以上材料,探索完成以下問題:
(1)已知點(diǎn)A(2,1)、B(,)、C(,)、D(4,),其中在直線3x-2y=4上的點(diǎn)有 ;請(qǐng)?jiān)賹懗鲋本3x-2y=4上一個(gè)點(diǎn)的坐標(biāo) ;
(2)已知點(diǎn)P(x,y)的坐標(biāo)滿足不等式組,則所有的點(diǎn)P組成的圖形的面積是 ;
(3)已知點(diǎn)P(x,y)的坐標(biāo)滿足不等式組 ,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出所有的點(diǎn)P組成的圖形(涂上陰影),并直接寫出上述圖形的面積 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射陽(yáng)縣實(shí)驗(yàn)初中為了解全校學(xué)生上學(xué)期參加社區(qū)活動(dòng)的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動(dòng)的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
參加社區(qū)活動(dòng)次數(shù)的頻數(shù)、頻率分布表
活動(dòng)次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請(qǐng)估計(jì)該校在上學(xué)期參加社區(qū)活動(dòng)超過6次的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點(diǎn)B,連接CO并延長(zhǎng)交⊙O于點(diǎn)D、E,連接AD并延長(zhǎng)交BC于點(diǎn)F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;
(2)求證:;
(3)若BC=AB,求tan∠CDF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有四個(gè)大小完全相同的小球,把它們分別標(biāo)號(hào)1,2,3,4,從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再?gòu)闹须S機(jī)摸出一個(gè)球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.
【答案】 .
【解析】試題分析:
根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計(jì)算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計(jì)3種,
∴P(兩次摸到小球的數(shù)字之和等于4)=.
【題型】解答題
【結(jié)束】
23
【題目】小亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿AB的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測(cè)得其長(zhǎng)度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn)。
(1)畫出向下平移2個(gè)單位,再向右平移3個(gè)單位后得到的;
(2)圖中與的關(guān)系是:____________________;
(3)圖中的面積是___________________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)讀書風(fēng)尚,打造書香校園,學(xué)校計(jì)劃購(gòu)買一批圖書。若同時(shí)購(gòu)進(jìn)種圖書10本和種圖書7本,共需395元;若同時(shí)購(gòu)進(jìn)種圖書5本和種圖書3本,共需185元。
(1)求兩種圖書的單價(jià)各是多少元?
(2)若學(xué)校計(jì)劃購(gòu)買這兩種圖書共80本,要求每種都要購(gòu)買,且種圖書的數(shù)量少于種圖書的數(shù)量,又根據(jù)學(xué)校預(yù)算,購(gòu)買總金額不能超過1890元,請(qǐng)問學(xué)校共有幾種購(gòu)買方案?(請(qǐng)寫出具體的購(gòu)買方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,…,P2011
在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是x1,x2,x3,…,x2011,縱坐標(biāo)分別是1,3,5,…,共2011個(gè)連續(xù)奇數(shù),過點(diǎn)P1,P2,P3,…,P2011分別作y軸的平行線,與的圖象交點(diǎn)依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2011,y2011),則y2011=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長(zhǎng)為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com