【題目】如圖,一次函數y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數y= 的圖象在第一象限的交點為C,CD⊥x軸,垂足為D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數與反比例函數的解析式;
(2)直接寫出當x>0時,kx+b﹣ <0的解集.
科目:初中數學 來源: 題型:
【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):
次數 | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同學計算出了甲的成績平均數是9,方差是
S甲2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,請作答:
(1)在圖中用折線統(tǒng)計圖將甲運動員的成績表示出來;
(2)若甲、乙射擊成績平均數都一樣,則a+b=;
(3)在(2)的條件下,當甲比乙的成績較穩(wěn)定時,請列舉出a、b的所有可能取值,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A點的坐標為(﹣1,5),B點的坐標為(3,3),C點的坐標為(5,3),D點的坐標為(3,﹣1),小明發(fā)現:線段AB與線段CD存在一種特殊關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,你認為這個旋轉中心的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數和形是數學的兩個主要研究對象,我們經常運用數形結合、數形轉化的方法解決一些數學問題.下面我們來探究“由數思形,以形助數”的方法在解決代數問題中的應用.
(1)探究一:求不等式|x﹣1|<2的解集
探究|x﹣1|的幾何意義
如圖①,在以O為原點的數軸上,設點A′對應的數是x﹣1,有絕對值的定義可知,點A′與點O的距離為|x﹣1|,可記為A′O=|x﹣1|.將線段A′O向右平移1個單位得到線段AB,此時點A對應的數是x,點B對應的數是1.因為AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的幾何意義可以理解為數軸上x所對應的點A與1所對應的點B之間的距離AB.
探究求方程|x﹣1|=2的解
因為數軸上3和﹣1所對應的點與1所對應的點之間的距離都為2,所以方程的解為3,﹣1.
探究:
求不等式|x﹣1|<2的解集
因為|x﹣1|表示數軸上x所對應的點與1所對應的點之間的距離,所以求不等式解集就轉化為求這個距離小于2的點對應的數x的范圍.
請在圖②的數軸上表示|x﹣1|<2的解集,并寫出這個解集.
(2)探究二:探究 的幾何意義
探究:
的幾何意義
如圖③,在直角坐標系中,設點M的坐標為(x,y),過M作MP⊥x軸于P,作MQ⊥y軸于Q,則P點坐標為(x,0),Q點坐標為(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,則MO= = = ,因此, 的幾何意義可以理解為點M(x,y)與點O(0,0)之間的距離MO.
探究:
的幾何意義
如圖④,在直角坐標系中,設點A′的坐標為(x﹣1,y﹣5),由探究二(1)可知,A′O= ,將線段A′O先向右平移1個單位,再向上平移5個單位,得到線段AB,此時點A的坐標為(x,y),點B的坐標為(1,5),因為AB=A′O,所以AB= ,因此 的幾何意義可以理解為點A(x,y)與點B(1,5)之間的距離AB.
探究 的幾何意義
①請仿照探究二的方法,在圖⑤中畫出圖形,并寫出探究過程.
② 的幾何意義可以理解為:
(3)拓展應用:
① + 的幾何意義可以理解為:點A(x,y)與點E(2,﹣1)的距離和點A(x,y)與點F(填寫坐標)的距離之和.
② + 的最小值為(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校園廣播主持人培訓班開展比賽活動,分為 A、B、C、D四個等級,對應的成績分別是9分、8分、7分、6分,根據如圖不完整的統(tǒng)計圖解答下列問題:
(1)補全下面兩個統(tǒng)計圖(不寫過程);
(2)求該班學生比賽的平均成績;
(3)現準備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學生的概率?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A在函數y1=﹣ (x>0)的圖象上,點B在直線y2=kx+1+k(k為常數,且k≥0)上.若A,B兩點關于原點對稱,則稱點A,B為函數y1 , y2圖象上的一對“友好點”.請問這兩個函數圖象上的“友好點”對數的情況為( )
A.有1對或2對
B.只有1對
C.只有2對
D.有2對或3對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點M在以O為圓心,AB為直徑的半圓弧上運動(點M不與點A、B 及 的中點F 重合),連接OM.過點M 作ME⊥AB于點E,以BE為邊在半圓同側作正方形BCDE,過點M作⊙O的切線交射線DC于點N,連接BM、BN.
(1)探究:如圖一,當動點M在 上運動時;
①判斷△OEM∽△MDN是否成立?請說明理由;
②設 =k,k是否為定值?若是,求出該定值,若不是,請說明理由;
③設∠MBN=α,α是否為定值?若是,求出該定值,若不是,請說明理由;
(2)拓展:如圖二,當動點M 在 上運動時;
分別判斷(1)中的三個結論是否保持不變?如有變化,請直接寫出正確的結論.(均不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點,EF過點O且EF⊥AC分別交DC于點F,交AB于點E,點G是AE中點且∠AOG=30°,給出以下結論: ①∠AFC=120°;
②△AEF是等邊三角形;
③AC=3OG;
④S△AOG= S△ABC
其中正確的是 . (把所有正確結論的序號都選上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com