已知四邊形ABCD是平行四邊形(如圖),把△ABD沿對(duì)角線BD翻折180°得到△A′BD.
(1)利用尺規(guī)作出△A′BD.(要求保留作圖痕跡,不寫作法);
(2)設(shè)DA′與BC交于點(diǎn)E,求證:△BA′E≌△DCE.
【答案】分析:(1)首先作∠A′BD=∠ABD,然后以B為圓心,AB長(zhǎng)為半徑畫弧,交BA′于點(diǎn)A′,連接BA′,DA′,即可作出△A′BD.
(2)由四邊形ABCD是平行四邊形與折疊的性質(zhì),易證得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.
解答:解:(1)如圖:①作∠A′BD=∠ABD,
②以B為圓心,AB長(zhǎng)為半徑畫弧,交BA′于點(diǎn)A′,
③連接BA′,DA′,
則△A′BD即為所求;

(2)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠BAD=∠C,
由折疊的性質(zhì)可得:∠BA′D=∠BAD,A′B=AB,
∴∠BA′D=∠C,A′B=CD,
在△BA′E和△DCE中,
,
∴△BA′E≌△DCE(AAS).
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知四邊形ABCD是矩形,當(dāng)補(bǔ)充條件
AB=AD
(用字母表示)時(shí),就可以判定這個(gè)矩形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC、CD上的動(dòng)點(diǎn),正方形ABCD的邊長(zhǎng)為4cm.

(1)如圖①,O是正方形ABCD對(duì)角線的交點(diǎn),若OM⊥ON,求四邊形MONC的面積;
(2)如圖②,若∠MAN=45°,求△MCN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC,CD上的動(dòng)點(diǎn).
(1)如圖①,設(shè)O是正方形ABCD對(duì)角線的交點(diǎn),若OM⊥ON,求證:BM=CN,
(2)在(1)的條件下,若正方形ABCD的邊長(zhǎng)為4cm,求四邊形MONC的面積;
(3)如圖②,若∠MAN=45°試說明△MCN的周長(zhǎng)等于正方形ABCD周長(zhǎng)的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是平行四邊形,則下列結(jié)論中哪一個(gè)不滿足平行四邊形的性質(zhì)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是菱形,點(diǎn)E、F分別是邊CD、AD的中點(diǎn),若AE=3cm,那么CF=
3
3
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案