【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點(diǎn)MAN的中點(diǎn),過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N。

1)當(dāng)AB,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:AD=NE

2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。

【答案】1)見解析;(2)見解析;(3)成立,證明見解析

【解析】

1)由ENAD,點(diǎn)MAN的中點(diǎn),利用AAS證得△ADM≌△NEM,從而得到結(jié)論;

2)易證AB=DA=NE,∠ABC=NEC=135°,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=BCE=90°,則有△ACN為等腰直角三角形;

3)借鑒(2)中的解題經(jīng)驗(yàn)可得AB=DA=NE,∠ABC=NEC=180°-CBN,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=BCE=90°,則有△ACN為等腰直角三角形.

1)如圖1,

ENAD,

∴∠MAD=MNE,∠ADM=NEM

∵點(diǎn)MAN的中點(diǎn),

AM=MN

ADMNEM中,

∴△ADM≌△NEM(AAS)

AD=NE

2)如圖2,

BADBCE均為等腰直角三角形,

AB=ADCB=CE,∠CBE=CEB=45°

ADNE,∴∠DAE+NEA=180°

∵∠DAE=90°,∴∠NEA=90°

∴∠NEC=135°

A,B,E三點(diǎn)在同一直線上,

∴∠ABC=180°﹣∠CBE=135°

∴∠ABC=NEC

ENAD,

∴∠MAD=MNE,∠ADM=NEM

∵點(diǎn)MAN的中點(diǎn),

AM=MN

ADMNEM中,

∴△ADM≌△NEM(AAS)

AD=NE

又∵AD=AB,∴AB=NE

ABCNEC中,

∴△ABC≌△NEC(SAS)

AC=NC,∠ACB=NCE

∴∠ACN=BCE=90°

∴△ACN為等腰直角三角形.

3ACN仍為等腰直角三角形.

如圖3,

此時(shí)A、BN三點(diǎn)在同一條直線上.

ADEN,∠DAB=90°,∴∠ENA=DAN=90°

∵∠BCE=90°,∴∠CBN+CEN=360°90°90°=180°

A、BN三點(diǎn)在同一條直線上,∴∠ABC+CBN=180°

∴∠ABC=NEC

∵△ADM≌△NEM(已證),AD=NE

又∵AD=AB,∴AB=NE

在△ABC和△NEC中,

∴△ABC≌△NEC(SAS)

AC=NC,∠ACB=NCE

∴∠ACN=BCE=90°

∴△ACN為等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac0;③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有(  )個(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的長為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC4,面積為24,AC的垂直平分線EF分別交邊AC,AB于點(diǎn)E,F,DBC邊的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),CDM的周長的最小值為 (  )

A.8B.10C.12D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(﹣1,)及原點(diǎn),交x軸于另一點(diǎn)C(2,0),點(diǎn)D(0,m)是y軸正半軸上一動(dòng)點(diǎn),直線AD交拋物線于另一點(diǎn)B.

(1)求拋物線的解析式;

(2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

(3)如圖2,作BEx軸于E,連接AC、DE,當(dāng)D點(diǎn)運(yùn)動(dòng)變化時(shí),AC、DE的位置關(guān)系是否變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸的

正半軸上,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)為

的值.

若將菱形向右平移,使點(diǎn)落在反比例函數(shù)的圖象上,求菱形平移的距離.

怎樣平移可以使點(diǎn)、同時(shí)落在第一象限的曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),連接DF,過點(diǎn)EEHDF,垂足為H,EH的延長線交DC于點(diǎn)G.

(1)猜想DGCF的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)過點(diǎn)HMNCD,分別交AD,BC于點(diǎn)M,N,若正方形ABCD的邊長為10,點(diǎn)PMN上一點(diǎn),求△PDC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.

車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表

生產(chǎn)零件的個(gè)數(shù)(個(gè))

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案