【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù) 的圖象是直線l1 , l1與x軸、y軸分別相交于A、B兩點(diǎn).直線l2過(guò)點(diǎn)C(a,0)且與直線l1垂直,其中a>0.點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)P沿射線AB運(yùn)動(dòng),速度為每秒4個(gè)單位;點(diǎn)Q沿射線AO運(yùn)動(dòng),速度為每秒5個(gè)單位.
(1)寫出A點(diǎn)的坐標(biāo)和AB的長(zhǎng);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了多少秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時(shí)a的值.
【答案】
(1)解:∵一次函數(shù) 的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點(diǎn),
∴y=0時(shí),x=﹣4,
∴A(﹣4,0),AO=4,
∵圖象與y軸交點(diǎn)坐標(biāo)為:(0,3),BO=3,
∴AB=5
(2)解:由題意得:AP=4t,AQ=5t, =t,
又∠PAQ=∠OAB,
∴△APQ∽△AOB,
∴∠APQ=∠AOB=90°,
∵點(diǎn)P在l1上,
∴⊙Q在運(yùn)動(dòng)過(guò)程中保持與l1相切,
①當(dāng)⊙Q在y軸右側(cè)與y軸相切時(shí),設(shè)l2與⊙Q相切于F,由△APQ∽△AOB,得:
∴ ,
∴PQ=6;
故AQ=10,則運(yùn)動(dòng)時(shí)間為: =2(秒);
連接QF,則QF=PQ,
∵直線l2過(guò)點(diǎn)C(a,0)且與直線l1垂直,F(xiàn)Q⊥l2,
∴∠APQ=∠QFC=90°,AP∥FQ,
∴∠PAQ=∠FQC,
∴△QFC∽△APQ,
∴△QFC∽△APQ∽△AOB,
得: ,
∴ ,
∴ ,
∴QC= ,
∴a=OQ+QC=OC= ,
②如圖2,當(dāng)⊙Q在y軸的左側(cè)與y軸相切時(shí),設(shè)l2與⊙Q相切于E,由△APQ∽△AOB得: ,
∴PQ= ,
則AQ=4﹣ =2.5,
∴則運(yùn)動(dòng)時(shí)間為: = (秒);
故當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了2秒或 秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,
連接QE,則QE=PQ,
∵直線l2過(guò)點(diǎn)C(a,0)且與直線l1垂直,⊙Q在運(yùn)動(dòng)過(guò)程中保持與l1相切于點(diǎn)P,
∴∠AOB=90°,∠APQ=90°,
∵∠PAO=∠BAO,
∴△APQ∽△AOB,
同理可得:△QEC∽△APQ∽△AOB得: ,
∴ , = ,
∴QC= ,a=QC﹣OQ= ,
綜上所述,a的值是: 和 ,
【解析】(1)根據(jù)一次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)求法,分別求出坐標(biāo)即可;(2)根據(jù)相似三角形的判定得出△APQ∽△AOB,以及當(dāng)⊙Q在y軸右側(cè)與y軸相切時(shí),當(dāng)⊙Q在y軸的左側(cè)與y軸相切時(shí),分別分析得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識(shí),掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廣安某網(wǎng)站調(diào)查,2016年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)以上信息解答下列問(wèn)題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)若廣安市約有900萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注環(huán)保問(wèn)題的人數(shù)約為多少萬(wàn)人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,則抽取的兩人恰好是甲和乙的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長(zhǎng);
(Ⅱ)如圖②,若∠CAB=60°,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸交于點(diǎn)B.
(1)求此二次函數(shù)關(guān)系式和點(diǎn)B的坐標(biāo);
(2)在x軸的正半軸上是否存在點(diǎn)P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三個(gè)布袋都不透明,甲袋中裝有1個(gè)紅球和1個(gè)白球;乙袋中裝有一個(gè)紅球和2個(gè)白球;丙袋中裝有2個(gè)白球.這些球除顏色外都相同.從這3個(gè)袋中各隨機(jī)地取出1個(gè)球. (Ⅰ)取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是多少?
(Ⅱ)取出的3個(gè)球全是白球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2=(x>0)交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①S△ADB=S△ADC;
②當(dāng)0<x<3時(shí),y1<y2;
③如圖,當(dāng)x=3時(shí),EF=;
④當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減。
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出問(wèn)題:只有一張電影票,小明和小剛想通過(guò)抽取撲克牌的游戲來(lái)決定誰(shuí)去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說(shuō)明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD于正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A,D1 , D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)求對(duì)稱中心的坐標(biāo).
(2)寫出頂點(diǎn)B,C,B1 , C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x與一次函數(shù)y=﹣x+7的圖象交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo)。
(2)設(shè)x軸上有一點(diǎn)P(a,0),過(guò)點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交y=x和y=﹣x+7的圖象于點(diǎn)B、C,連接OC.若BC=OA,求△OBC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com