(2012•沙縣質(zhì)檢)如圖,已知AB=AC,∠A=36°,AB的中垂線MN交AC于點(diǎn)D,交AB于點(diǎn)M,有下面3個(gè)結(jié)論:
①射線BD是∠ABC的角平分線;②△BCD是等腰三角形;③△AMD≌△BCD.
(1)判斷其中正確的結(jié)論是哪幾個(gè)?
(2)從你認(rèn)為是正確的結(jié)論中選一個(gè)加以證明.
分析:(1)正確的結(jié)論是①和②;
(2)若選擇①,根據(jù)MN為線段AB的中垂線,利用線段垂直平分線定理得到DA=DB,再根據(jù)等邊對(duì)等角可得∠A=∠ABD,由等腰三角形ABC及頂角的度數(shù)求出底角的度數(shù),利用∠DBC=∠ABC-∠ABD求出∠DBC的度數(shù),進(jìn)而得到∠ABD=∠DBC,即BD為角平分線;
若選擇②,由①求出的∠C和∠DBC的度數(shù),求出∠BDC的度數(shù),發(fā)現(xiàn)∠C=∠BDC,根據(jù)等角對(duì)等邊可得BD=BC,即三角形BCD為等腰三角形.
解答:解:(1)正確的結(jié)論是①、②;

(2)若①正確,理由如下:
∵M(jìn)N是AB的中垂線,
∴DA=DB,
則∠A=∠ABD=36°,
又等腰三角形ABC中,AB=AC,∠A=36°,
∴∠C=∠ABC=72°,∴∠DBC=36°,
則BD是∠ABC的平分線;
若②正確,理由如下:
由①知:∠C=72°,∠DBC=36°,
∴∠BDC=72°,即∠C=∠BDC,
∴BD=BC,即△BCD是等腰三角形.
點(diǎn)評(píng):此題考查了線段垂直平分線定理,等腰三角形的判定與性質(zhì),三角形的內(nèi)角和定理,以及三角形的外角性質(zhì),要求學(xué)生借助圖形,熟練運(yùn)用定理及性質(zhì),利用轉(zhuǎn)化的思想達(dá)到解決問(wèn)題的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沙縣質(zhì)檢)某高速公路中最長(zhǎng)的隧道總長(zhǎng)約為6500米,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沙縣質(zhì)檢)如圖,點(diǎn)A、B、C在⊙O上,∠AOB=120°,D在AC延長(zhǎng)線上,CD=BC,則∠D=
30°
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沙縣質(zhì)檢)a是不為1的有理數(shù),我們把
1
1-a
稱為a的差倒數(shù),如:2的差倒數(shù)是
1
1-2
=-1
,-1的差倒數(shù)是
1
1-(-1)
=
1
2
.已知
a
 
1
=3
,
a
 
2
是a1的差倒數(shù),a3
a
 
2
的差倒數(shù),a4是a3的差倒數(shù),…,以此類推,則a2012=
-
1
2
-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沙縣質(zhì)檢)(1)計(jì)算:|-3|+(
5
-1
0-(
6
2
(2)解方程:
1
x-2
+3=
1-x
2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沙縣質(zhì)檢)如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),過(guò)點(diǎn)C作CE⊥AB,垂足為E,將△AEC沿AC翻折得到△AFC,AF交⊙O于點(diǎn)D,連接CD、OC.
(1)CF是⊙O的切線嗎?請(qǐng)說(shuō)明理由.
(2)當(dāng)∠CAE=30°時(shí),判斷四邊形AOCD是何種特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案