【題目】1)解方程:

2)已知關(guān)于的方程 的解是正數(shù),求的取值范圍.

【答案】1x= -2m>-6m-4

【解析】

(1)解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論;

(2) 首先去分母,化成整式方程,求得x的值,然后根據(jù)方程的解大于0,且x-20即可求得m的范圍.

解:(1)1=

兩邊都乘(x+2)(x2),得

x(x+2)(x+2)(x2)=1,

解得x=,

檢驗:當x=時,(x+2)(x2)=0,

∴原分式方程的解為x=;

(2)=3

去分母,得2x+m=3(x2)

去括號,得2x+m=3x6,

解得:x=m+6

根據(jù)題意得:m+620m+6>0,

解得:m>6m4.

故答案是:(1) x=;(2)m>6m4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab、c是正數(shù),下列各式,從左到右的變形不能用如圖驗證的是( 。

A. b+c2b2+2bc+c2

B. ab+c)=ab+ac

C. a+b+c2a2+b2+c2+2ab+2bc+2ac

D. a2+2abaa+2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強學(xué)生的環(huán)保意識,某校組織了一次全校2000名學(xué)生都參加的環(huán)保知識考試,考題共10題.考試結(jié)束后,學(xué)校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次抽查的樣本容量是   ;在扇形統(tǒng)計圖中,m=   ,n=   ,“答對8所對應(yīng)扇形的圓心角為   度;

(2)將條形統(tǒng)計圖補充完整;

(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點0 RtABC斜邊AB上的一點,以OA 為半徑的☉OBC切于點D,與AC 交于點E,連接AD.

(1) 求證: AD平分∠BAC;

(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD 中,AEBF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M

(1)求證:AEBF

(2)判斷線段 DF CE 的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程x2+px+q=0的兩個根是x1、x2,那么x1+x2=-p,x1·x2=q.請根據(jù)以上結(jié)論,解決下列問題:

(1)已知關(guān)于x的方程x2+mx+n=0 (n≠0),求出一個一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù);

(2)已知a、b滿足a2-15a-5=0,b2-15b-5=0,求的值;

(3)已知a、b、c均為實數(shù),且a+b+c=0,abc=16,求正數(shù)c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的倍,購進數(shù)量比第一次少了30支.

(1)求第一次每支鉛筆的進價是多少元?

(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,延長至點,使,連接,以為直角邊在左側(cè)作等腰三角形,其中,連接.

1)求證:;

2)若,求的長.

3有何位置關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB添加一個條件不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

同步練習(xí)冊答案