【題目】如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔的南偏東45°方向上的處,這時(shí)輪船與小島的距離是__________海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線AB交于點(diǎn)A(2,3),直線AB與x軸交于點(diǎn)B(4,0),過點(diǎn)B作x軸的垂線BC,交反比例函數(shù)的圖象于點(diǎn)C,在平面內(nèi)存在點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,則點(diǎn)D的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,,,E、F是BC、CD邊上點(diǎn),且,,AE 、AF分別交BD于點(diǎn)M,N,則MN的長度是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=4,b=5,則該矩形的面積為( )
A.50B.40C.30D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC(AC<BC<AC)繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△DEC,射線AB交射線DE于點(diǎn)F.
(1)∠AFD與∠BCE的關(guān)系是 ;
(2)如圖2,當(dāng)旋轉(zhuǎn)角為60°時(shí),點(diǎn)D,點(diǎn)B與線段AC的中點(diǎn)O恰好在同一直線上,延長DO至點(diǎn)G,使OG=OD,連接GC.
①∠AFD與∠GCD的關(guān)系是 ,請說明理由;
②如圖3,連接AE,BE,若∠ACB=45°,CE=4,求線段AE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQ與BN相交于點(diǎn)P,CN與DQ相交于點(diǎn)M,判斷四邊形MNPQ的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的⊙O分別與x軸,y軸交于A,D兩點(diǎn),⊙O上兩個(gè)動(dòng)點(diǎn)B,C,使∠BAC=60°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AG⊥BC,垂足為點(diǎn)G,點(diǎn)E為邊AC上一點(diǎn),BE=CE,點(diǎn)D為邊BC上一點(diǎn),GD=GB,連接AD交BE于點(diǎn)F.
(1)求證:∠ABE=∠EAF;
(2)求證:AE2=EFEC;
(3)若CG=2AG,AD=2AF,BC=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答
(1)解不等式①,得___________;
(2)解不等式②,得___________;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com