【題目】如圖,斜坡BE,坡頂B到水平地面的距離AB3米,坡底AE18米,在B處,E處分別測得CD頂部點D的仰角為30°60°,求CD的高度.(結果保留根號)

【答案】CD的高度是

【解析】

BFCD于點F,設DFx米, 在Rt△DBF中利用三角函數(shù)用x表示出BF的長,在直角△DCE中表示出CE的長,然后根據(jù)BF-CE=AE即可解答

BFCD于點F,設DFx米,

在Rt△DBF中,tan∠DBF

BF ,

在直角△DCE中,DCx+CF=3+x(米),

在直角△DCE中,tan∠DEC ,則EC米.

BFCEAE,即 xx+3)=18.

解得:x=9 + ,

CD=9 + +3=9 +(米).

答:CD的高度是米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,△ABC中,∠ACB=90°AC=BC=8,點A在半徑為5的⊙O上,點O在直線l上.

(1)如圖①,若⊙O經(jīng)過點C,交BC于點D,求CD的長.

(2)(1)的條件下,若BC邊交l于點E,OE=2,求BE的長.

(3)如圖②,若直線l還經(jīng)過點CBC是⊙O 的切線,F為切點,則CF的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

次數(shù)

購買數(shù)量(件

購買總費用(元

A

B

第一次

2

1

55

第二次

1

3

65

根據(jù)以上信息解答下列問題:

(1)求A,B兩種商品的單價;

(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示.現(xiàn)有下列結論:①;②;③;④當時,的增大而減。虎;⑥.其中正確的結論有(

A. lB. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線軸交于、兩點,與軸交于點.

1)求拋物線解析式:

2)拋物線對稱軸上存在一點,連接,當值最大時,求點H坐標:

3)若拋物線上存在一點,,當時,求點坐標:

4)若點M平分線上的一點,點是平面內一點,若以、為頂點的四邊形是矩形,請直接寫出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,點PQ分別在BC、CD上,∠PAQ=∠B

1)如圖1,若APBC,求證:APAQ;

2)如圖2,若點PBC上一點,APAQ仍成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小敏學習之余設計了一個求函數(shù)表達式的程序,具體如圖所示,則當輸入下列點的坐標時,請按程序指令解答.

1P110),P2(﹣3,0).

2P12,﹣1),P24,﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為測量學校旗桿AB的高度,小明從旗桿正前方6米處的點C出發(fā),沿坡度為i1的斜坡CD前進2米到達點D,在點D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、B、C、DE在同一平面內,且旗桿和測角儀都與地面垂直.

(1)求點D的鉛垂高度(結果保留根號)

(2)求旗桿AB的高度(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角ABC中,延長BC到點D,點OAC邊上的一個動點,過點O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于E,F兩點,連接AE、AF,在下列結論中:①OEOF;②CECF;③若CE12,CF5,則OC的長為6;④當AOCO時,四邊形AECF是矩形.其中正確的是( 。

A. ①④B. ①②C. ①②③D. ②③④

查看答案和解析>>

同步練習冊答案