【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點,點E、F分別為BO、DO的中點,連接AF,CE.
(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點分別在DB和BD的延長線上時,且滿足BE=DF,上述結(jié)論仍然成立嗎?請說明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AO=CO,BO=DO,
∵點E、F分別為BO、DO的中點,
∴EO=OF,
∵AO=CO,
∴四邊形AECF是平行四邊形;
(2)解:結(jié)論仍然成立,
理由:∵BE=DF,BO=DO,
∴EO=FO,
∵AO=CO,
∴四邊形AECF是平行四邊形.
【解析】(1)由平行四邊形ABCD,得出對角線互相平分即AO=CO,BO=DO,再根據(jù)點E、F分別為BO、DO的中點,可證得EO=OF,根據(jù)對角線互相平分的四邊形是平行四邊形,即可得證。
(2)E,F(xiàn)點分別在DB和BD的延長線上時,且滿足BE=DF,結(jié)論仍然成立,證法同(1)。
【考點精析】認(rèn)真審題,首先需要了解平行四邊形的判定與性質(zhì)(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
①畫出與△ABC關(guān)于y軸對稱的△A1B1C1 , 求點C1的坐標(biāo)。
②以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O為△ABC的外接圓,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交⊙O于點D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OD平分∠AOF,OE⊥CD于點O,∠1=50°,求∠BOC、∠BOF的度數(shù).
解:∵OE⊥CD( ),
∴∠DOE=_____°( ),
∵∠1=50°( ),
∴∠AOD=∠________-∠________=________°,
∵∠BOC與∠AOD為_______角(____________),
∴∠BOC=∠________=∠_________°(_____________),
∵OD平分∠AOF(______________),
且∠AOD=____________°(______________),
∴∠AOF=2∠__________=________°( ),
∵∠BOF+∠AOF=______°( ),
∴∠BOF=______°-∠AOF=_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點,AB=,AD=2,BC=3,下列結(jié)論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系.
(1)猜想圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系;
(2)將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度a,得到如圖2、如圖3情形.請你通過觀察、測量等方法判斷(1)中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com