(2012•深圳)下列命題
①方程x2=x的解是x=1;
②4的平方根是2;
③有兩邊和一角相等的兩個(gè)三角形全等;
④連接任意四邊形各邊中點(diǎn)的四邊形是平行四邊形;
其中正確的個(gè)數(shù)有( 。
分析:①運(yùn)用因式分解法求出方程的解即可判斷;
②根據(jù)平方根的定義即可判斷;
③根據(jù)全等三角形的判定方法即可判斷;
④根據(jù)平行四邊形的判定方法即可判斷.
解答:解:①方程x2=x的解是x1=0,x2=1,故錯(cuò)誤;
②4的平方根是±2,故錯(cuò)誤;
③有兩邊和夾角相等的兩個(gè)三角形全等,故錯(cuò)誤;
④連接任意四邊形各邊中點(diǎn)的四邊形是平行四邊形,正確.
故正確的個(gè)數(shù)有1個(gè).
故選D.
點(diǎn)評(píng):此題主要考查了命題與定理,解一元二次方程-因式分解法,平方根,全等三角形的判定,三角形中位線定理,平行四邊形的判定,綜合性較強(qiáng),但難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•深圳)“節(jié)能環(huán)保,低碳生活”是我們倡導(dǎo)的一種生活方式,某家電商場(chǎng)計(jì)劃用11.8萬元購(gòu)進(jìn)節(jié)能型電視機(jī)、洗衣機(jī)和空調(diào)共40臺(tái),三種家電的進(jìn)價(jià)和售價(jià)如表所示:
價(jià)格
 
種類
進(jìn)價(jià)
(元/臺(tái))
售價(jià)
(元/臺(tái))
電視機(jī) 5000 5500
洗衣機(jī) 2000 2160
空  調(diào) 2400 2700
(1)在不超出現(xiàn)有資金的前提下,若購(gòu)進(jìn)電視機(jī)的數(shù)量和洗衣機(jī)的數(shù)量相同,空調(diào)的數(shù)量不超過電視機(jī)的數(shù)量的3倍.請(qǐng)問商場(chǎng)有哪幾種進(jìn)貨方案?
(2)在“2012年消費(fèi)促進(jìn)月”促銷活動(dòng)期間,商家針對(duì)這三種節(jié)能型產(chǎn)品推出“現(xiàn)金每購(gòu)1000元送50元家電消費(fèi)券一張、多買多送”的活動(dòng).在(1)的條件下,若三種電器在活動(dòng)期間全部售出,商家預(yù)估最多送出多少?gòu)垼?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•福田區(qū)二模)2011年第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì),已經(jīng)在美麗的深圳落下了帷幕,“不一樣的精彩”,至今還令人回味無窮.去年年初,深圳大運(yùn)場(chǎng)館進(jìn)行賽前的最后裝修,急需裝飾材料,大運(yùn)指揮部進(jìn)行科學(xué)地調(diào)配,在A、B兩地分別籌備了同型號(hào)的裝飾材料170噸和150噸,運(yùn)往甲館180噸,乙館140噸,從A、B兩地運(yùn)往甲、乙兩館的費(fèi)用如下表:
(1)如果從A地運(yùn)往甲館x噸,求完成以上調(diào)運(yùn)所需總費(fèi)用y(元)與x(臺(tái))的函數(shù)關(guān)系式;
(2)若大運(yùn)指揮部請(qǐng)你設(shè)計(jì)一種最佳調(diào)運(yùn)方案,使總的費(fèi)用最少,完成以上調(diào)運(yùn)方案至少需要多少費(fèi)用?為什么?
甲館(元/噸) 乙館(元/噸)
A地 600 500
B地 400 800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學(xué)模擬試卷(05)(解析版) 題型:解答題

(2012•深圳二模)如圖,拋物線y=ax2+bx+c(a>0)交x軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交y軸于點(diǎn)C.已知B(8,0),tan∠ABC=,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動(dòng)直線EF(EF∥x軸)從點(diǎn)C開始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng).連接FP,設(shè)運(yùn)動(dòng)時(shí)間t秒.當(dāng)t為何值時(shí),的值最大,求出最大值;
(3)在滿足(2)的條件下,是否存在t的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似.若存在,試求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(21)(解析版) 題型:解答題

(2012•深圳二模)如圖,拋物線y=ax2+bx+c(a>0)交x軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交y軸于點(diǎn)C.已知B(8,0),tan∠ABC=,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動(dòng)直線EF(EF∥x軸)從點(diǎn)C開始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng).連接FP,設(shè)運(yùn)動(dòng)時(shí)間t秒.當(dāng)t為何值時(shí),的值最大,求出最大值;
(3)在滿足(2)的條件下,是否存在t的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似.若存在,試求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市長(zhǎng)寧區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•深圳二模)如圖,拋物線y=ax2+bx+c(a>0)交x軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交y軸于點(diǎn)C.已知B(8,0),tan∠ABC=,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動(dòng)直線EF(EF∥x軸)從點(diǎn)C開始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng).連接FP,設(shè)運(yùn)動(dòng)時(shí)間t秒.當(dāng)t為何值時(shí),的值最大,求出最大值;
(3)在滿足(2)的條件下,是否存在t的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似.若存在,試求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案