【題目】如圖,在△ABC中,O是AC上一動點(不與點A、C重合),過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)OE與OF相等嗎?證明你的結(jié)論;
(2)試確定點O的位置,使四邊形AECF是矩形,并加以證明.
【答案】(1)OE=OF(2)當O運動到AC中點時,四邊形AECF是矩形
【解析】整體分析:
(1)利用等角對等邊分別判斷OE=OC,OF=OC;(2)先判斷四邊形AECF是平行四邊形,再證明∠ECF=90°.
解:(1)OE=OF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠FCD,
∵CE平分∠ACB,CF平分∠ACD,
∴∠BCE=∠ACE,∠OCF=∠FCD,
∴∠ACE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OC=OF,
∴OE=OF.
(2)當O運動到AC中點時,四邊形AECF是矩形,
∵AO=CO,OE=OF,
∴四邊形AECF是平行四邊形,
∵∠ECA+∠ACF=∠BCD,
∴∠ECF=90°,
∴四邊形AECF是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,,,其中a、b滿足關(guān)系式:.
______,______,的面積為______;
如圖2,石于點C,點P是線段OC上一點,連接BP,延長BP交AC于點當時,求證:BP平分;提示:三角形三個內(nèi)角和等于
如圖3,若,點E是點A與點B之間上一點連接CE,且CB平分問與有什么數(shù)量關(guān)系?請寫出它們之間的數(shù)量關(guān)系并請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射線AC的方向勻速平移得到△PNM,速度為1cm/s,同時,點Q從點C出發(fā),沿射線CB方向勻速運動,速度為1cm/s,當△PNM停止平移時,點Q也停止運動,如圖2所示,設(shè)運動時間為t(s)(0<t<4).
(1)當t為何值時,PQ∥MN?
(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得PQ=QM,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標是________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某采摘農(nóng)場計劃種植A,B兩種草莓共6畝,根據(jù)表格信息,解答下列問題:
項目 品種 | A | B |
年畝產(chǎn)(單位:千克) | 1200 | 2000 |
采摘價格 | 60 | 40 |
(1)若該農(nóng)場每年草莓全部被采摘的總收入為460000元,那么A、B兩種草莓各種多少畝?
(2)若要求種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?并求出最多總收入.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC.
證明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=150°,點A到BC的距離為1,與AB重合的一條射線AP,從AB開始,以每秒15°的速度繞點A逆時針勻速旋轉(zhuǎn),到達AC后立即以相同的速度返回AB,到達后立即重復(fù)上述旋轉(zhuǎn)過程,設(shè)AP與BC邊的交點為M,旋轉(zhuǎn)2019秒時,BM= , CM= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式ax5+bx3+3x+c,當x=0時,該代數(shù)式的值為﹣1.
(1)求c的值;
(2)已知當x=3時,該式子的值為9,試求當x=﹣3時該式子的值;
(3)在第(2)小題的已知條件下,若有3a=5b成立,試比較a+b與c的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com