【題目】如右圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,如果點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,那么表示y與x的函數(shù)關(guān)系的圖像大致是( )
A.B.
C.D.
【答案】A
【解析】
先做出合適的輔助線(xiàn),再證明△ADC和△AOB的關(guān)系,即可建立y與x的函數(shù)關(guān)系,從而確定函數(shù)圖像.
解:由題意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,點(diǎn)C的縱坐標(biāo)是y,
作AD∥x軸,作CD⊥AD于點(diǎn)D,如圖所示:
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
∠AOB=∠ADC,∠OAB=∠DAC,AB=AC
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵點(diǎn)C到x軸的距離為y,點(diǎn)D到x軸的距離等于點(diǎn)A到x的距離1,
∴y=x+1(x>0).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題探究函數(shù)(b、c為常數(shù))的圖象和性質(zhì).元元根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)該函數(shù)的圖象和性質(zhì)進(jìn)行了以下探究:
下面是元元的探究過(guò)程,請(qǐng)你補(bǔ)充完整
x | …… | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | …… |
y | …… | 0 | 2.5 | 4 | m | 4 | 2.5 | 0 | 1 | …… |
(1)根據(jù)上表信息,其中b=____,c=_____,m=______.
(2)如圖,在下面平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫(huà)出該函數(shù)的另一部分圖象;
(3)觀(guān)察函數(shù)圖象,請(qǐng)寫(xiě)出該函數(shù)的一條性質(zhì):______.
(4)解決問(wèn)題:若直線(xiàn)y=3n+2(n為常數(shù))與該函數(shù)圖象有3個(gè)交點(diǎn)時(shí),求n的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E、F分別為BC、CD的中點(diǎn),AF與DE交與點(diǎn)G.則下列結(jié)論中:①AF⊥DE;②AD=BG;③GE+GF=GC;④S△AGB=2S四邊形ECFG.其中正確的是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線(xiàn);
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,O為坐標(biāo)原點(diǎn),在軸上,,垂直于軸,,.若動(dòng)點(diǎn)、同時(shí)從點(diǎn)0出發(fā),點(diǎn)沿折線(xiàn)運(yùn)動(dòng),到達(dá)點(diǎn)時(shí)停止;點(diǎn)沿運(yùn)動(dòng),到達(dá)點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是每秒1個(gè)單位長(zhǎng)度。設(shè)運(yùn)動(dòng)秒時(shí),的面積為(平方單位),則關(guān)于的函數(shù)圖象大致為( )
A.B.
C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交軸于、(左右)兩點(diǎn),交軸于點(diǎn),且.
(1)如圖(1)求拋物線(xiàn)的解析式;
(2)如圖(2)為第四象限拋物線(xiàn)上一點(diǎn),連接,將線(xiàn)段沿著軸翻折,得到線(xiàn)段,連接,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與的函數(shù)關(guān)系式;
(3)如圖(3)在(2)的條件下,是第一象限拋物線(xiàn)上的一點(diǎn),軸交的延長(zhǎng)線(xiàn)于,垂足是,過(guò)點(diǎn)作軸交軸于、交直線(xiàn)于點(diǎn),連接,,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探究發(fā)現(xiàn):下面是一道例題及解答過(guò)程,請(qǐng)補(bǔ)充完整:
如圖①在等邊△ABC內(nèi)部,有一點(diǎn)P,若∠APB=150°,求證:AP2+BP2=CP2
證明:將△APC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,得到△AP’B,連接PP’,則△APP’為等邊三角形
∴∠APP’=60° ,PA=PP’ ,PC=
∵∠APB=150°,∴∠BPP’=90°
∴P’P2+BP2= ,即PA2+PB2=PC2
(2)類(lèi)比延伸:如圖②在等腰△ABC中,∠BAC=90°,內(nèi)部有一點(diǎn)P,若∠APB=135°,試判斷線(xiàn)段PA,PB,PC之間的數(shù)量關(guān)系,并證明.
(3)聯(lián)想拓展:如圖③在△ABC中,∠BAC=120°,AB=AC,點(diǎn)P在直線(xiàn)AB上方,且∠APB=60°,滿(mǎn)足(kPA)2+PB2=PC2(其中k>0),請(qǐng)直接寫(xiě)出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,是銳角,于點(diǎn),是的中點(diǎn),連接,.若,則的值為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com