(2011•德州)2011年5月9日至14日,德州市共有35000余名學(xué)生參加中考體育測(cè)試,為了了解九年級(jí)男生立定跳遠(yuǎn)的成績(jī),從某校隨機(jī)抽取了50名男生的測(cè)試成績(jī),根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的得分按優(yōu)秀、良好、及格、不及格(分別用A、B、C、D表示)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制成下面的扇形圖和統(tǒng)計(jì)表:
等級(jí)
成績(jī)(分)
頻數(shù)(人數(shù))
頻率
A
90~100
19
0.38
B
75~89
m
x
C
60~74
n
y
D
60以下
3
0.06
合計(jì)
 
50
1.00
請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問題:
(1)m=  ,n=  ,x= ,y=  ;
(2)在扇形圖中,C等級(jí)所對(duì)應(yīng)的圓心角是  度;
(3)如果該校九年級(jí)共有500名男生參加了立定跳遠(yuǎn)測(cè)試,那么請(qǐng)你估計(jì)這些男生成績(jī)等級(jí)達(dá)到優(yōu)秀和良好的共有多少人?
解:(1)50×40%=20,0.4;50﹣19﹣20﹣3=8,8÷50=0.16;
故答案為:20,8,0.4,0.16(4分)
(2)0.16×360=57.6°,
故答案為57.6.(6分)
(3)由上表可知達(dá)到優(yōu)秀和良好的共有19+20=39人,500×=390人.(8分)解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•德州)為創(chuàng)建“國(guó)家衛(wèi)生城市”,進(jìn)一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府?dāng)M對(duì)部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個(gè)工程隊(duì)有能力承包這個(gè)工程.經(jīng)調(diào)查知道:乙隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間比甲隊(duì)單獨(dú)完成多用25天,甲、乙兩隊(duì)合作完成工程需要30天,甲隊(duì)每天的工程費(fèi)用2500元,乙隊(duì)每天的工程費(fèi)用2000元.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成各需多少天?
(2)請(qǐng)你設(shè)計(jì)一種符合要求的施工方案,并求出所需的工程費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•德州)如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題

(2011•德州)解不等式組,并把解集在數(shù)軸上表示出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題

(2011•德州)在直角坐標(biāo)系xoy中,已知點(diǎn)P是反比例函數(shù)(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的.若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題

(2011•德州)●觀察計(jì)算
當(dāng)a=5,b=3時(shí),的大小關(guān)系是
當(dāng)a=4,b=4時(shí),的大小關(guān)系是=
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計(jì)算、探究證明,你能得出的大小關(guān)系是:
●實(shí)踐應(yīng)用
要制作面積為1平方米的長(zhǎng)方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案